期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
Production of High Purity Multi-Walled Carbon Nanotubes from Catalytic Decomposition of Methane 被引量:3
1
作者 Kong Bee Hong Aidawati Azlin Binti Ismail +2 位作者 Mohamed Ezzaham Bin Mohd Mahayuddin Abdul Rahman Mohamed Sharif Hussein Sharif Zein 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第4期266-270,共5页
Acid-based purification process of multi-walled carbon nanotubes (MWNTs) produced via catalytic decomposition of methane with NiO/TiO2 as a catalyst is described. By combining the oxidation in air and the acid reflu... Acid-based purification process of multi-walled carbon nanotubes (MWNTs) produced via catalytic decomposition of methane with NiO/TiO2 as a catalyst is described. By combining the oxidation in air and the acid refluxes, the impurities, such as amorphous carbon, carbon nanoparticles, and the NiO/TiO2 catalyst, are eliminated. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images confirm the removal of the impurities. The percentage of the carbon nanotubes purity was analyzed using thermal gravimetric analysis (TGA). Using this process, 99.9 wt% purity of MWNTs was obtained. 展开更多
关键词 multi-walled carbon nanotubes PURIFICATION acid refluxes OXIDATION METHANE DECOMPOSITION
在线阅读 下载PDF
Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study 被引量:2
2
作者 Camile Rodolphe Tchenguem Kamto Bridinette Thiodjio Sendja Jeannot Mane Mane 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第9期145-149,共5页
The multi-walled carbon nanotubes(MWCNTs) studied in this work were synthesized by the catalytic chemical vapor deposition(CCVD) process, and were thermally annealed by the hot filament plasma enhanced(HF PE) method a... The multi-walled carbon nanotubes(MWCNTs) studied in this work were synthesized by the catalytic chemical vapor deposition(CCVD) process, and were thermally annealed by the hot filament plasma enhanced(HF PE) method at 550℃ for two hours.The x-ray absorption near edge structure(XANES) technique was used to investigate the adsorption and desorption phenomena of the MWCNTs at normal and grazing incidence angles.The adsorbates were found to have different sensitivities to the thermal annealing.The geometry of the incident beam consistently gave information about the adsorption and desorption phenomena.In addition, the adsorption of non-intrinsic potassium quantitatively affected the intrinsic adsorbates and contributed to increase the conductivity of the MWCNTs.The desorption of potassium was almost 70% greater after the thermal annealing.The potassium non-intrinsic adsorbates are from a physisorption mechanism whereas the intrinsic adsorbates result from chemisorption. 展开更多
关键词 multi-walled carbon nanotubes thermal ANNEALING adsorption DESORPTION
在线阅读 下载PDF
Purified oxygenand nitrogen-modified multi-walled carbon nanotubes as metal-free catalysts for selective olefin hydrogenation 被引量:2
3
作者 Peirong Chen Ly May Chew +3 位作者 Aleksander Kostka Kunpeng Xie Martin Muhler Wei Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第2期312-320,共9页
Oxygen and nitrogen-functionalized carbon nanotubes (OCNTs and NCNTs) were applied as metal-free catalysts in selective olefin hydro- genation. A series of NCNTs was synthesized by NH3 post-treatment of OCNTs. Tempe... Oxygen and nitrogen-functionalized carbon nanotubes (OCNTs and NCNTs) were applied as metal-free catalysts in selective olefin hydro- genation. A series of NCNTs was synthesized by NH3 post-treatment of OCNTs. Temperature-programmed desorption, N2 physisorption, Raman spectroscopy, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy were employed to characterize the surface properties of OCNTs and NCNTs, aiming at a detailed analysis of the type and amount of oxygen- and nitrogen-containing groups as well as surface defects. The gas-phase treatments applied for oxygen and nitrogen functionalization at elevated temperatures up to 600 ℃ led to the increase of surface defects, but did not cause structural damages in the bulk. NCNTs showed a clearly higher activity than the pristine CNTs and OCNTs in the hydrogenation of 1,5-cyclooctadiene, and also the selectivity to cyclooctene was higher. The favorable catalytic properties are ascribed to the nitrogen-containing surface functional groups as well as surface defects related to nitrogen species. In contrast, oxygen-containing surface groups and the surface defects caused by oxygen species did not show clear contribution to the hydrogenation catalysis. 展开更多
关键词 multi-walled carbon nanotubes nitrogen-containing functional groups oxygen-containing functional groups metal-free catalyst selectiveolefin hydrogenation
在线阅读 下载PDF
A comparative study of polymer nanocomposites containing multi-walled carbon nanotubes and graphene nanoplatelets 被引量:3
4
作者 Xiao Su Ruoyu Wang +4 位作者 Xiaofeng Li Sherif Araby Hsu-Chiang Kuan Mohannad Naeem Jun Ma 《Nano Materials Science》 EI CAS CSCD 2022年第3期185-204,共20页
Featuring exceptional mechanical and functional performance, MWCNTs and graphene(nano)platelets(GNPs or Gn Ps;each platelet below 10 nm in thickness) have been increasingly used for the development of polymer nanocomp... Featuring exceptional mechanical and functional performance, MWCNTs and graphene(nano)platelets(GNPs or Gn Ps;each platelet below 10 nm in thickness) have been increasingly used for the development of polymer nanocomposites. Since MWCNTs are now cost-effective at US$30 per kg for industrial applications, this work starts by briefly reviewing the disentanglement and surface modification of MWCNTs as well as the properties of the resulting polymer nanocomposites. GNPs can be made through the thermal treatment of graphite intercalation compounds followed by ultrasonication;GNPs would have lower cost yet higher electrical conductivity over 1,400 S cmthan MWCNTs. Through proper surface modification and compounding techniques, both types of fillers can reinforce or toughen polymers and simultaneously add anti-static performance. A high ratio of MWCNTs to GNPs would increase the synergy for polymers. Green, solvent-free systhesis methods are desired for polymer nanocomposites. Perspectives on the limitations, current challenges and future prospects are provided. 展开更多
关键词 Graphene(nano)platelets(GNPs) multi-walled carbon nanotubes(MWCNTs) Polymer nanocomposites Synergistic effect
在线阅读 下载PDF
Acetylcholinesterase Biosensor Based on Poly(diallyldimethylammonium chloride)-multi-walled Carbon Nanotubes-graphene Hybrid Film 被引量:1
5
作者 Xia Sun Zhili Gong +1 位作者 Yaoyao Cao Xiangyou Wang 《Nano-Micro Letters》 SCIE EI CAS 2013年第1期47-56,共10页
In this paper, an amperometric acetylcholinesterase(ACh E) biosensor for quantitative determination of carbaryl was developed. Firstly, the poly(diallyldimethy-lammonium chloride)-multi-walled carbon nanotubes-graphen... In this paper, an amperometric acetylcholinesterase(ACh E) biosensor for quantitative determination of carbaryl was developed. Firstly, the poly(diallyldimethy-lammonium chloride)-multi-walled carbon nanotubes-graphene hybrid film was modified onto the glassy carbon electrode(GCE) surface, then ACh E was immobilized onto the modified GCE to fabricate the ACh E biosensor. The morphologies and electrochemistry properties of the prepared ACh E biosensor were investigated by using scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. All variables involved in the preparation process and analytical performance of the biosensor were optimized. Based on the inhibition of pesticides on the ACh E activity, using carbaryl as model compounds, the biosensor exhibited low detection limit, good reproducibility and high stability in a wide range. Moreover, the biosensor can also be used for direct analysis of practical samples, which would provide a new promising tool for pesticide residues analysis. 展开更多
关键词 BIOSENSOR ACETYLCHOLINESTERASE multi-walled carbon nanotubes GRAPHENE Poly(diallyldimethy lammonium chloride)
在线阅读 下载PDF
Prediction of Henry Constants and Adsorption Mechanism of Volatile Organic Compounds on Multi-Walled Carbon Nanotubes by Using Support Vector Regression 被引量:1
6
作者 程文德 蔡从中 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第4期143-146,共4页
Support vector regression (SVR) combined with particle swarm optimization for its parameter optimization is employed to establish a model for predicting the Henry constants of multi-walled carbon nanotubes (MWNTs)... Support vector regression (SVR) combined with particle swarm optimization for its parameter optimization is employed to establish a model for predicting the Henry constants of multi-walled carbon nanotubes (MWNTs) for adsorption of volatile organic compounds (VOCs). The prediction performance of SVR is compared with those of the model of theoretical linear salvation energy relationship (TLSER). By using leave-one-out cross validation of SVR test Henry constants for adsorption of 35 VOCs on MWNTs, the root mean square error is 0.080, the mean absolute percentage error is only 1.19~, and the correlation coefficient (R2) is as high as 0.997. Compared with the results of the TLSER model, it is shown that the estimated errors by SVR are ali smaller than those achieved by TLSER. It reveals that the generalization ability of SVR is superior to that of the TLSER model Meanwhile, multifactor analysis is adopted for investigation of the influences of each molecular structure descriptor on the Henry constants. According to the TLSER model, the adsorption mechanism of adsorption of carbon nanotubes of VOCs is mainly a result of van der Waals and interactions of hydrogen bonds. These can provide the theoretical support for the application of carbon nanotube adsorption of VOCs and can make up for the lack of experimental data. 展开更多
关键词 of is in SVR Prediction of Henry Constants and Adsorption Mechanism of Volatile Organic Compounds on multi-walled carbon nanotubes by Using Support Vector Regression VOCs MWNTS by on
在线阅读 下载PDF
Electron irradiation-induced change of structure and damage mechanisms in multi-walled carbon nanotubes
7
作者 杨剑群 李兴冀 +2 位作者 刘超铭 马国亮 高峰 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期333-341,共9页
Owing to their unique structure and excellent electrical property, carbon nanotubes (CNTs) as an ideal candidate for making future electronic components have great application potentiality. In order to meet the requ... Owing to their unique structure and excellent electrical property, carbon nanotubes (CNTs) as an ideal candidate for making future electronic components have great application potentiality. In order to meet the requirements for space appli- cation in electronic components, it is necessary to study structural changes and damage mechanisms of multi-walled carbon nanotubes (MWCNTs), caused by the irradiations of 70 and 110 keV electrons. In the paper, the changes of structure and damage mechanisms in the irradiated MWCNTs, induced by the irradiations of 70 and 110 keV electrons, are investigated. The changes in surface morphology and structure of the irradiated MWCNT film are characterized using scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, x-ray diffraction analysis (XRD), and electron paramagnetic resonance (EPR) spectroscopy. It is found that the MWCNTs show different behaviors in structural changes after 70 and 110 keV electron irradiation due to different damage mechanisms. SEM results reveal that the irra- diation of 70 keV electrons does not change surface morphology of the MWCNT film, while the irradiation of 110 keV electrons with a high fluence of 5 x 1015 cm-2 leads to evident morphological changes, such as the formation of a rough surface, the entanglement of nanotubes and the shrinkage of nanotubes. Based on Raman spectroscopy, XPS, and XRD analyses, it is confirmed that the irradiation of 70 keV electrons increases the interlayer spacing of the MWCNTs and disorders their structure through electronic excitations and ionization effects, while the irradiation of 110 keV electrons obviously reduces the interlayer spacing of the MWCNTs and improves their graphitic order through knock-on atom dis- placements. The improvement of the irradiated MWCNTs by 110 keV electrons is attributed to the restructuring of defect sites induced by knock-on atom displacements. EPR spectroscopic analyses reveal that the MWCNTs exposed to both 70 keV electrons and 110 keV electrons suffer ionization damage to some extent. 展开更多
关键词 electron irradiation multi-walled carbon nanotubes damage mechanisms Raman spectroscopy
在线阅读 下载PDF
Thermal conductivity of multi-walled carbon nanotubes:Molecular dynamics simulations
8
作者 胡帼杰 曹炳阳 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第9期347-353,共7页
Heat conduction in single-walled carbon nanotubes (SWCNTs) has been investigated by using various methods, while less work has been focused on multi-walled carbon nanotubes (MWCNTs). The thermal conductivities of ... Heat conduction in single-walled carbon nanotubes (SWCNTs) has been investigated by using various methods, while less work has been focused on multi-walled carbon nanotubes (MWCNTs). The thermal conductivities of the double-walled carbon nanotubes (DWCNTs) with two different temperature control methods are studied by using molecular dynamics (MD) simulations. One case is that the heat baths (HBs) are imposed only on the outer wall, while the other is that the HBs are imposed on both the two walls. The results show that the ratio of the thermal conductivity of DWCNTs in the first case to that in the second case is inversely proportional to the ratio of the cross-sectional area of the DWCNT to that of its outer wall. In order to interpret the results and explore the heat conduction mechanisms, the inter-wall thermal transport of DWCNTs is simulated. Analyses of the temperature profiles of a DWCNT and its two walls in the two cases and the inter- wall thermal resistance show that in the first case heat is almost transported only along the outer wall, while in the second case a DWCNT behaves like parallel heat transport channels in which heat is transported along each wall independently. This gives a good explanation of our results and presents the heat conduction mechanisms of MWCNTs. 展开更多
关键词 multi-walled carbon nanotubes thermal conductivity temperature control method molecular dynamics simulation
在线阅读 下载PDF
Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
9
作者 莫家俊 夏溥越 +6 位作者 沈纪宇 陈海文 陆泽一 徐诗语 张庆航 夏艳芳 刘敏 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期639-645,共7页
This work examines the origin of the abnormal magnetism exhibited by Cu Mn Fe-PBAs modified with multi-walled carbon nanotubes(MWCNTs).The system of Cu Mn Fe-PBAs@MWCNTs coexists with both large and small clusters.Cu ... This work examines the origin of the abnormal magnetism exhibited by Cu Mn Fe-PBAs modified with multi-walled carbon nanotubes(MWCNTs).The system of Cu Mn Fe-PBAs@MWCNTs coexists with both large and small clusters.Cu Mn Fe-PBAs clusters have an average particle size of 28 nm,and some of the smaller particles are adsorbed on the surface of MWCNTs.Surprisingly,the magnitude of magnetization increases linearly with decreasing temperature.When above the Curie temperature,the magnitude of magnetization is significantly greater than that of PBAs without being modified.This phenomenon can be attributed to magnetostatic interactions between ultra-fine magnetic nanoparticles adsorbed on the surface of MWCNTs.Using the Monte Carlo method,we simulated the magnetostatic interaction of cylindrical adsorbed particles,and the simulation results are almost identical to those observed experimentally.The results indicate that 0.089Cu Mn Fe-PBAs clusters per 1 nm^(2)can be adsorbed onto the surface area of MWCNTs.We demonstrate that MWCNTs adsorbing magnetic particles exhibit magnetic behavior,and suggest a method for producing ultrafine materials.It also introduces a new method of calculating the adsorption efficiency of carbon nanotubes,offering theoretical guidance for future research on nanomaterials with enhanced adsorption efficiency. 展开更多
关键词 multi-walled carbon nanotubes prussian blue analogue Monte Carlo simulation magnetostatic interaction
在线阅读 下载PDF
Preparation of multi-walled carbon nanotube–Fe composites and their application as light weight and broadband electromagnetic wave absorbers 被引量:3
10
作者 刘渊 刘祥萱 王煊军 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第11期552-555,共4页
Multi-walled carbon nanotube (MWCNT)-Fe composites were prepared via the metal organic chemical vapor deposi- tion by depositing iron pentacarbonyl on the surface of MWCNTs. The structural and morphological analyses... Multi-walled carbon nanotube (MWCNT)-Fe composites were prepared via the metal organic chemical vapor deposi- tion by depositing iron pentacarbonyl on the surface of MWCNTs. The structural and morphological analyses demonstrated that Fe nanoparticles were deposited on the surface of the MWCNTs. The electromagnetic properties of the MWCNTs were significantly changed, and the absorbing capacity evidently improved after the Fe deposition on the MWCNT surface. A minimum reflection loss of -29.4 dB was observed at 8.39 GHz, and the less than -10 dB bandwidth was about 10.6 GHz, which covered the whole X band (8.2-12.4 GHz) and the whole Ku band (12.4-18 GHz), indicating that the MWCNT-Fe composites could be used as an effective microwave absorption material. 展开更多
关键词 multi-walled carbon nanotube nano composites electrical properties microwave absorber
在线阅读 下载PDF
Sucrose pyrolysis assembling carbon nanotubes on graphite felt using for vanadium redox flow battery positive electrode 被引量:2
11
作者 Haitao Yang Chuanlin Fan Qingshan Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第2期451-454,共4页
In the present paper, multi-walled carbon nanotubes(MWCNTs) are successfully assembled on graphite felt(GF) using sucrose pyrolysis method for the first time. The in situ formed pyrolytic carbon is chosen as the b... In the present paper, multi-walled carbon nanotubes(MWCNTs) are successfully assembled on graphite felt(GF) using sucrose pyrolysis method for the first time. The in situ formed pyrolytic carbon is chosen as the binder because it is essentially carbon materials as well as CNTs and GF which has a natural tendency to achieve high bonding strength and low contact resistance. The MWCNTs/GF electrode is demonstrated to increase surface area, reduce polarization, lower charge transfer resistance and improve energy conversion efficiency comparing with GF. This excellent electrochemical performance is mainly ascribed to the high electro-catalytic activity of MWCNTs and increasing surface area. 展开更多
关键词 Vanadium redox flow batteries multi-walled carbon nanotubes Sucrose pyrolysis Positive electrode materials REVERSIBILITY
在线阅读 下载PDF
RTV silicone rubber composites reinforced with carbon nanotubes,titanium-di-oxide and their hybrid:Mechanical and piezoelectric actuation performance 被引量:1
12
作者 Vineet Kumar Anuj Kumar +1 位作者 Sung Soo Han Sang-Shin Park 《Nano Materials Science》 CAS CSCD 2021年第3期233-240,共8页
The use of nanofillers with high surface area and extreme purity in polymer composite is an effective strategy to obtain high performance polymeric nanocomposites.Therefore,the effect of nanofillers such as carbon nan... The use of nanofillers with high surface area and extreme purity in polymer composite is an effective strategy to obtain high performance polymeric nanocomposites.Therefore,the effect of nanofillers such as carbon nanotubes(CNT),titanium dioxide(TiO_(2)),and their hybrid on rubber-based composites was studied.In this study,rubber nanocomposites were fabricated by using room temperature vulcanized(RTV)silicone rubber matrix and nanofillers(i.e.CNT,TiO_(2),and CNT-TiO_(2))through solution casting method.Here,the purity and surface area of CNT(purity:>96%and BET surface area:300 m2/g)and TiO_(2)(purity:>98%and BET surface area:165 m2/g)were estimated by field emission scanning electron microscopy/energy dispersive X-ray(FESEM-EDX)and adsorption isotherms.The mechanical properties of the rubber nanocomposites were enhanced by incorporating nanofillers.The compressive modulus was 2.18 MPa for unfilled composites and increased to 6.8 MPa(CNT),3.95 MPa(CNT-TiO_(2)),and 2.44 MPa(TiO_(2))at 5 phr,respectively.Similarly,the tensile strength was 0.54 MPa for unfilled composites and increased to 1.37 MPa(CNT),1.33 MPa(CNT-TiO_(2))and 0.61 MPa(TiO_(2))at 5 phr,respectively.Further,the actuation displacement was improved with increasing input voltage and it was 2 mm for CNT,1.6 mm for CNT-TiO_(2) hybrid and 0.5 mm for TiO_(2) at 10 kV.Moreover,a series of experiments show the potential application in piezoelectric actuation. 展开更多
关键词 multi-walled carbon nanotubes Titanium dioxide HYBRID Mechanical properties Piezoeletric actuation
在线阅读 下载PDF
Carbon nanotubes as conducting support for potential Mn-oxide electrocatalysts: Influences of pre-treatment procedures 被引量:2
13
作者 Saskia Buller Marius Heise-Podleska +2 位作者 Norbert Pfander Marc Willinger Robert Schlogl 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第2期263-269,共7页
Different oxygen and nitrogen containing functional groups were created on the surface of the multiwalled carbon nanotubes. The multi-walled carbon nanotubes were treated in ultrasonic bath with sulfuric or nitric aci... Different oxygen and nitrogen containing functional groups were created on the surface of the multiwalled carbon nanotubes. The multi-walled carbon nanotubes were treated in ultrasonic bath with sulfuric or nitric acid. Furthermore the surface texture was modified by increase of the roughness. In particular after treatment with the oxidizing nitric acid, in comparison to the H2SO4 or ultra-sonic treated samples,craters and edges are dominating the surface structures. Manganese oxide was deposited on the multiwalled carbon nanotubes by precipitation mechanism. Various manganese oxides are formed during the deposition process. The samples were characterized by elemental analysis, microscopy, thermal analysis,Raman spectroscopy, and by the zeta potential as well as X-ray diffraction measurements. It was shown that the deposited manganese oxides are stabilized rather by surface texture of the multi-walled carbon nanotubes than by created functional groups. 展开更多
关键词 multi-walled carbon nanotubes(MWCNT) Surface modification Raman spectroscopy Manganese deposition Zeta potential
在线阅读 下载PDF
Effect of carbon nanotube on physical and mechanical properties of natural fiber/glass fiber/cement composites 被引量:1
14
作者 Hamed Younesi Kordkheili Shokouh Etedali Shehni Ghorban Niyatzade 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第1期247-251,共5页
The objective of this investigation was to introduce a cement-based composite of higher quality. For this purpose new hybrid nanocomposite from bagasse fiber,glass fiber and multi-wall carbon nanotubes(MWCNTs)were m... The objective of this investigation was to introduce a cement-based composite of higher quality. For this purpose new hybrid nanocomposite from bagasse fiber,glass fiber and multi-wall carbon nanotubes(MWCNTs)were manufactured. The physical and mechanical properties of the manufactured composites were measured according to standard methods. The properties of the manufactured hybrid nanocomposites were dramatically better than traditional composites. Also all the reinforced composites with carbon nanotube, glass fiber or bagasse fiber exhibited better properties rather than neat cement.The results indicated that bagasse fiber proved suitable for substitution of glass fiber as a reinforcing agent in the cement composites. The hybrid nanocomposite containing10 % glass fiber, 10 % bagasse fiber and 1.5 % MWCNTs was selected as the best compound. 展开更多
关键词 Cement hybrid nanocomposites multi-wall carbon nanotubes Bagasse fiber Physical and mechanical properties
在线阅读 下载PDF
Carbon materials with quasi-graphene layers:The dielectric,percolation properties and the electronic transport mechanism 被引量:1
15
作者 卢明明 袁杰 +3 位作者 温博 刘甲 曹文强 曹茂盛 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期495-500,共6页
We investigate the dielectric properties of multi-walled carbon nanotubes(MWCNTs) and graphite filling in SiO2 with the filling concentration of 2-20 wt.% in the frequency range of 10 ^2-10^ 7 Hz.MWCNTs and graphite... We investigate the dielectric properties of multi-walled carbon nanotubes(MWCNTs) and graphite filling in SiO2 with the filling concentration of 2-20 wt.% in the frequency range of 10 ^2-10^ 7 Hz.MWCNTs and graphite have general electrical properties and percolation phenomena owing to their quasi-structure made up of graphene layers.Both permittivity ε and conductivity σ exhibit jumps around the percolation threshold.Variations of dielectric properties of the composites are in agreement with the percolation theory.All the percolation phenomena are determined by hopping and migrating electrons,which are attributed to the special electronic transport mechanism of the fillers in the composites.However,the twin-percolation phenomenon exists when the concentration of MWCNTs is between 5-10 wt.% and 15-20 wt.% in the MWCNTs/SiO2 composites,while in the graphite/SiO2 composites,there is only one percolation phenomenon in the graphite concentration of 10-15 wt.%.The unique twin-percolation phenomenon of MWCNTs/SiO2 is described and attributed to the electronic transfer mechanism,especially the network effect of MWCNTs in the composites.The network formation plays an essential role in determining the second percolation threshold of MWCNTs/SiO2. 展开更多
关键词 multi-walled carbon nanotube quasi-graphene layer dielectric properties PERCOLATION
在线阅读 下载PDF
多维碳材料/聚氨酯复合材料的制备、力学性能及功能性
16
作者 李道壮 吴晓静 +4 位作者 王凤玲 杜正鹏 蔡荣强 夏贤良 李再峰 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2024年第9期36-41,共6页
文中采用异氟尔酮二异氰酸酯对氧化石墨烯(GO)和羟基碳纳米管(OH-MWCNTs)混合碳材料接枝改性,制备出NCO官能团接枝的MWCNTs-g-GO高活性多维碳材料及新型聚氨酯复合材料。研究了MWCNTs-g-GO多维碳材料对力学性能、老化行为和导电性的影... 文中采用异氟尔酮二异氰酸酯对氧化石墨烯(GO)和羟基碳纳米管(OH-MWCNTs)混合碳材料接枝改性,制备出NCO官能团接枝的MWCNTs-g-GO高活性多维碳材料及新型聚氨酯复合材料。研究了MWCNTs-g-GO多维碳材料对力学性能、老化行为和导电性的影响。由X射线衍射分析得出,改性后混合碳材料中GO的层间距由0.87 nm扩大到1.71 nm,碳纳米管缠结程度明显降低,有效提升了碳纳米材料的分散性;随着多维MWCNTs-g-GO含量的增加,对聚氨酯进行了力学性能测试,其硬度、定伸强度逐渐增加,断裂伸长率单调降低,拉伸强度则先增大后减小;当其含量为0.05%时,拉伸强度较空白样提高23%,增大到48.7 MPa;老化150℃×5 d后,衰减率约为26.3%;当含量为0.20%时,电导率约为6.12×10^(-4) S/cm,是空白样的76倍。多维碳纳米材料较单一碳材料对聚氨酯表现出优异的增强、抗热氧和导电等作用。 展开更多
关键词 氧化石墨烯 羟基碳纳米管 二异氰酸酯改性 聚氨酯复合材料 力学性能
在线阅读 下载PDF
羟基化多壁碳纳米管固相萃取-液相色谱-串联质谱法测定儿童面霜中13种内分泌干扰物迁移量
17
作者 曹慧 张慧 +1 位作者 王瑾 杨春 《分析科学学报》 CAS CSCD 北大核心 2024年第3期344-349,共6页
建立了测定儿童面霜中13种内分泌干扰物迁移量的分析方法。样品经氨水/乙腈溶液(1∶9,V/V)超声提取,提取液稀释后经羟基化多壁碳纳米管固相萃取柱富集和净化,采用液相色谱-串联质谱负离子模式进行分析,基质外标法定量。在最优实验条件下... 建立了测定儿童面霜中13种内分泌干扰物迁移量的分析方法。样品经氨水/乙腈溶液(1∶9,V/V)超声提取,提取液稀释后经羟基化多壁碳纳米管固相萃取柱富集和净化,采用液相色谱-串联质谱负离子模式进行分析,基质外标法定量。在最优实验条件下,13种内分泌干扰物在各自的质量浓度范围内线性关系良好,相关系数(r)为0.9915~0.9996,检出限为0.3~1.5μg/kg,定量限为1.0~5.0μg/kg,在高、中、低3个加标水平下,13种内分泌干扰物的加标回收率为81.5%~109.4%,相对标准偏差为1.9%~9.2%。该方法操作简单、选择性好、检出限低,适用于儿童面霜中内分泌干扰物迁移量的测定。 展开更多
关键词 羟基化多壁碳纳米管 液相色谱-串联质谱 内分泌干扰物 迁移量 面霜
在线阅读 下载PDF
多壁碳纳米管固相萃取净化-高效液相色谱法测定猪肉和鸡肉中的磺胺多残留 被引量:40
18
作者 赵海香 刘海萍 闫早婴 《色谱》 CAS CSCD 北大核心 2014年第3期294-298,共5页
建立了多壁碳纳米管为吸附剂的固相萃取净化-高效液相色谱-紫外检测测定猪肉和鸡肉中多种磺胺类药物多残留的方法。样品采用乙腈提取,多壁碳纳米管固相萃取净化,NaH2PO4缓冲溶液(pH5.5~6.0)溶解上样,5%(v/v)丙酮-正己烷淋洗,... 建立了多壁碳纳米管为吸附剂的固相萃取净化-高效液相色谱-紫外检测测定猪肉和鸡肉中多种磺胺类药物多残留的方法。样品采用乙腈提取,多壁碳纳米管固相萃取净化,NaH2PO4缓冲溶液(pH5.5~6.0)溶解上样,5%(v/v)丙酮-正己烷淋洗,丙酮-二氯甲烷(1:1,v/v)洗脱。色谱分离以50mmol/LNaH2PO4-乙腈(7:3,v/v)为流动相,方法的线性范围为0.01~1.00mg/L,线性相关系数大于0.998,检出限(LOD)为0.003mg/L,定量限(LOQ)为0.01mg/L。在0.02~0.2mg/kg添加范围内,9种磺胺类药物的回收率高于70%,RSD低于8%,表明多壁碳纳米管对磺胺类药物具有较强的吸附富集能力。该方法简便、准确可用于动物组织及产品中磺胺药物残留的检测。 展开更多
关键词 固相萃取 高效液相色谱 磺胺 猪肉 鸡肉 多壁碳纳米管 solid-phase extraction(SPE) high performance liquid chromatography-ultraviolet detection( HPLC-UV) sulfonamides( SAs) multi-walled carbon nanotubes (MWCNTs)
在线阅读 下载PDF
碳纳米管/FeS类Fenton催化剂的制备及催化性能 被引量:11
19
作者 杨明轩 马杰 +4 位作者 孙怡然 熊新竹 李晨璐 李强 陈君红 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2014年第3期570-575,共6页
以浮动催化热分解法制备碳纳米管( CNTs),采用氧化-还原-硫化的方法制备了CNTs/FeS催化剂,采用X射线衍射( XRD)、透射电子显微镜( TEM)和热重( TG)分析等技术对催化剂进行了结构表征。将CNTs/FeS作为类Fenton催化剂用于水中... 以浮动催化热分解法制备碳纳米管( CNTs),采用氧化-还原-硫化的方法制备了CNTs/FeS催化剂,采用X射线衍射( XRD)、透射电子显微镜( TEM)和热重( TG)分析等技术对催化剂进行了结构表征。将CNTs/FeS作为类Fenton催化剂用于水中环丙沙星的去除,研究了降解过程中H2 O2浓度、CNTs/FeS催化剂的投加量、环丙沙星浓度及pH等因素对催化降解性能的影响。结果表明, CNTs/FeS类Fenton催化反应在H2 O2浓度为20 mmol/L和CNTs/FeS催化剂的投加量为10 mg的条件下具有最优的降解效果,其催化反应过程符合一级动力学方程,且具有更加宽泛的pH适应范围( pH=3-8),同时, CNTs/FeS类Fenton催化剂在使用寿命方面也具有一定的优势。 展开更多
关键词 碳纳米管 类芬顿 催化 羟基自由基 环丙沙星
在线阅读 下载PDF
羟基化多壁碳纳米管三明治隔膜对锂硫电池电化学性能的改善 被引量:6
20
作者 王杰 孙晓刚 +5 位作者 陈玮 李旭 黄雅盼 魏成成 胡浩 梁国东 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2018年第8期1782-1789,共8页
先利用羟基化多壁碳纳米管(MWCNTs-OH)与纸纤维制备了复合纤维纸(MWCNTs-OHP),然后将该复合纤维纸夹在两层PP隔膜之间组装三明治结构隔膜(PP@MWCNTs-OHP@PP)并应用于锂硫电池.利用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、红外光谱... 先利用羟基化多壁碳纳米管(MWCNTs-OH)与纸纤维制备了复合纤维纸(MWCNTs-OHP),然后将该复合纤维纸夹在两层PP隔膜之间组装三明治结构隔膜(PP@MWCNTs-OHP@PP)并应用于锂硫电池.利用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、红外光谱和元素能谱分析(EDS)等对材料进行结构和性能表征.电化学测试结果表明,PP@MWCNTs-OHP@PP三明治隔膜有效提高了锂硫电池的性能.在0.1C倍率下,电池首次放电比容量达到1532 m A·h/g,活性物质的利用率达到91.5%.在1C倍率下充放电循环500周后,放电比容量依然维持516 m A·h/g,每周循环衰减率为0.028%,库仑效率保持在96.4%以上.充放电倍率从3C减小到0.1C后,放电比容量从336 m A·h/g恢复到820 m A·h/g,显示出极佳的倍率性能. 展开更多
关键词 锂硫电池 多壁碳纳米管 羟基 隔膜 穿梭效应 锂硫化物
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部