We investigated the aerobic oxidation of ethylbenzene in the absence of solvent or any additive carried out over Ni on different types of supports namely SiO2, hydroxyapatite, SBA-15, and USY Zeolites. The oxidation o...We investigated the aerobic oxidation of ethylbenzene in the absence of solvent or any additive carried out over Ni on different types of supports namely SiO2, hydroxyapatite, SBA-15, and USY Zeolites. The oxidation of ethylbenzene activities was measured in a round bottom flask immersed in oil bath at known reaction temperature. The physicochemical characteristics of the catalysts were examined by BET surface area, XRD, FT-IR and the oxidation activities were correlated with the acidities of the catalysts obtained by TPD of NH3. It was observed that both hydroxyapatite and USY (13% Na2O) supported Ni catalysts displayed higher ethylbenzene conversion and 80% selectivity towards acetophenone.展开更多
Calcium hydroxyapatite(HAp) supported cobalt and cobalt-cerium catalysts were examined for hydrogen production in glycerol steam reforming. The catalysts were synthesized by incipient wetness impregnation method and...Calcium hydroxyapatite(HAp) supported cobalt and cobalt-cerium catalysts were examined for hydrogen production in glycerol steam reforming. The catalysts were synthesized by incipient wetness impregnation method and characterized through X-ray diffraction, adsorption-desorption isotherms of N2 and temperature-programmed reduction of H2. Catalytic properties were examined in terms of glycerol conversion, selectivity toward hydrogen and C-containing products in temperature range of 650-800 ℃.The effect of active metal reduction and residence time(thereby flow feed rate) was analysed. It was found that the growth of residence time increased the hydrogen selectivity in the whole temperatures range whereas the catalyst reduction, before the catalytic process, decreased the hydrogen selectivity at temperatures lower than 750 ℃. The cerium addition improved the catalytic behaviour for hydrogen production via glycerol steam reforming. Cerium oxide suppressed the sintering of cobalt particles and as a result Co-Ce/HAp ensured higher stability and H2 selectivity than Co/HAp. Under reaction conditions investigated in this study, the highest selectivity toward hydrogen at 650 ℃ was obtained for 7.5 Co-Ce/HAp catalyst.展开更多
Solid polymer electrolytes(SPEs)are one of the most promising alternatives to flammable liquid electrolytes for building safe Li metal batteries.Nevertheless,the poor ionic conductivity at room temperature(RT)and low ...Solid polymer electrolytes(SPEs)are one of the most promising alternatives to flammable liquid electrolytes for building safe Li metal batteries.Nevertheless,the poor ionic conductivity at room temperature(RT)and low resistance to Li dendrites seriously hinder the commercialization of SPEs.Herein,we design a bifunctional flame retardant SPE by combining hydroxyapatite(HAP)nanomaterials with Nmethyl pyrrolidone(NMP)in the PVDF-HFP matrix.The addition of HAP generates a hydrogen bond network with the PVDF-HFP matrix and cooperates with NMP to facilitate the dissociation of Li TFSI in the PVDF-HFP matrix.Consequently,the prepared SPE demonstrates superior ionic conductivity at RT,excellent fireproof properties,and strong resistance to Li dendrites.The assembled Li symmetric cell with prepared SPE exhibits a stable cycling performance of over 1200 h at 0.2 m A cm^(-2),and the solid-state LiFePO_4||Li cell shows excellent capacity retention of 85.3%over 600 cycles at 0.5 C.展开更多
Nano-Ag incorporated hydroxyapatite/titania (HA/TiO2) coatings were deposited on Ti6A14V substrates by the plasma electrolytic oxidation process. Compared with the substrate, the deposited coatings display attractiv...Nano-Ag incorporated hydroxyapatite/titania (HA/TiO2) coatings were deposited on Ti6A14V substrates by the plasma electrolytic oxidation process. Compared with the substrate, the deposited coatings display attractive mechani- cal and biomedical properties. First, the coatings have stronger wear resistance and corrosion resistance. Second, they show a strong antibacterial ability. The mean vitality of the P. gingivalis on the coating surfaces is reduced to about 21%. Third, the coatings have good biocompatibility. The mean viability of the fibroblast cells on the coating surface is increased to about 130%. With these attractive properties, Ag incorporated HA/TiO2 coatings may be useful in the biomedical field.展开更多
Selective oxidation of glycerol provides a feasible route towards the sustainable synthesis of high value-added chemicals.Herein,the hydroxyapatite(HAP)supported palladium(Pd)species were fabricated by impregnation an...Selective oxidation of glycerol provides a feasible route towards the sustainable synthesis of high value-added chemicals.Herein,the hydroxyapatite(HAP)supported palladium(Pd)species were fabricated by impregnation and subsequent calcination.The as-obtained heterogeneous Pd catalyst afforded not only excellent selectivity to glyceric acid(GLA)up to 90%with 59%conversion of glycerol but also good recyclability by using molecular oxygen as an oxidant under mild conditions.The characterization of catalysts indicated that both the surface basicity and Pd sites on the catalyst played a crucial role in promoting glycerol oxidation.Notably,it demonstrated that the presence of the vicinal hydroxyl group of glycerol molecule can assist the oxidation reaction via forming a coordination between the vicinal hydroxyl group and Ca^(2+) sites on HAP-derived catalysts.In this catalytic process,the secondary hydroxyl of glycerol kept untouched and the primary hydroxyl of glycerol was converted into carboxyl group,while the Pd species acted as active centers for cooperatively promoting the subsequent oxidation to generate GLA.Additionally,this catalytic system can be extended widely for the oxidative conversion of other vicinal diols into the corresponding a-hydroxycarboxylic acids selectively.Isotope labeling experiment using H_(2)^(18)O confirmed that H_(2)O not only acted as solvent but also was involved in the catalytic cycles.On the basis of the results,a possible reaction mechanism has been proposed.The HAP-supported Pd catalytic system has been shown to serve as an effective approach for the upgrading of bio-derived vicinal diols to high value-added chemicals.展开更多
Wear particles of ultrahigh molecular weight polyethylene (UHMWPE) are the main cause of long-term failure of total joint replacements. Therefore, increasing its wear resistance or bioactivity will be very useful in...Wear particles of ultrahigh molecular weight polyethylene (UHMWPE) are the main cause of long-term failure of total joint replacements. Therefore, increasing its wear resistance or bioactivity will be very useful in order to obtain high quality artificial joints. In our study, UHMWPE composites filled with the bovine bone hydroxyapatite (BHA) were prepared by the method of compression moulding. A ball-on-disc wear test was carried out with a Universal Micro-Tribometer to investigate the friction and wear behavior of a Si3N4 ceramic ball, cross-sliding against the UHMWPE/BHA composites with human plasma lubrication. At the same time, the profiles of the worn grooves on the UHMWPE/BHA surface were scanned. The experimental results indicate that the addition of BHA to UHMWPE had a significant effect on the biotribological behavior of UHMWPE cross-sliding against the Si3N4 ceramic ball. The addition of BHA powder enhanced the hardness and modulus of elasticity of these composites and decreased the friction coefficients and wear rates under conditions of human plasma lubrication. When the added amount of BHA powders was up to 20%-30%, UHMWPE/BHA composites demonstrated the designed performance of the mechanical properties and biotribological behavior.展开更多
Pure Ti plate surfaces are micro-ablated by femtosecond lasers in the ambience of hydroxyapatite suspension. It is found that three-stage hierarchical surface structures are produced with various laser energies. When ...Pure Ti plate surfaces are micro-ablated by femtosecond lasers in the ambience of hydroxyapatite suspension. It is found that three-stage hierarchical surface structures are produced with various laser energies. When the laser energy is 150μJ, a lava-like structure with a distribution of nanoholes is dispersed evenly on the laser ablated surface. While in the case of 300 μJ, the grooves-and-islands micro-patterns covered with nanoparticles are generated on the surface. Remarkably, Ca/P based substances are revealed to firmly deposit on the micro-structured surfaces. More phosphate growth is seen for the higher laser energy. Discussions suggest that the additional elements deposition could be attributed to the chemical reaction of plasma related ions in the suspension and their subsequent crystallisation on the fresh surfaces of Ti plate due to the femtosecond laser ablation.展开更多
Adsorption of a promising bone tumor therapeutic agent 153Sm-EDTMP (ethylene diamine tetramethylene phosphonic acid) and effects of several coexisting substances on adsorption and desorption were investigated using HA...Adsorption of a promising bone tumor therapeutic agent 153Sm-EDTMP (ethylene diamine tetramethylene phosphonic acid) and effects of several coexisting substances on adsorption and desorption were investigated using HA (hydroxyapatite) as an in vitro model. The adsorption is quantitative up to total deposition of 40 μmol/g HA, while nonquantitative when the complex concentration is above 40μmol/g HA in the medium of pH=7.0±0.2. The uptake increases significantly with the Ca ions added. Desorption of the adsorped complexes is in the sequence of EDTMP DTPA > EDTA. Two modes of adsorption of 153Sm-EDTMP on HA are suggested, the first one ( 40μmol/g HA) quantitatively covers the available surface and the second, by which, is less efficient, additional complexes are adsorped. Non-qualltitative adsorption is attributed to Coulomb repulsion while the complex concentration ranging from 40 to 80 μmol/g HA.展开更多
Objective: To evaluate the osteocompatibility of D, L-polylactic/hydroxyapatite/decalcifying bone matrix (PDLLA/HA/DBM), and compare with PDLLA and DBM. Methods: Human primary osteoblasts isolated from the femoral hea...Objective: To evaluate the osteocompatibility of D, L-polylactic/hydroxyapatite/decalcifying bone matrix (PDLLA/HA/DBM), and compare with PDLLA and DBM. Methods: Human primary osteoblasts isolated from the femoral head of patients were inoculated onto PDLLA/HA/DBM, PLA and DBM respectively. The proliferation rate and collagen Ⅰ expression were detected. The interface between biomaterial and osteoblasts was investigated with phase contrast microscopy and electron scanning microscopy. Results: Best proliferation rate was observed with the PDLLA/HA/DBM and followed by DBM and PLA, suggesting that PDLLA/HA/DBM satisfying most requirements for the cultivation of human osteoblasts. Scanning electron microscopy showed the morphology of osteoblasts was correlated with the proliferation data. The cells, well spread and flattened, were attached closely on the surface of biomaterial with an arched structure and had normal morphology. The extracellular collagenous matrixs covered the surface of biomaterial and packed the granules of biomaterial. Conclusion: PDLLA/HA/DBM can form osteointerface early and have a good biocompability.展开更多
文摘We investigated the aerobic oxidation of ethylbenzene in the absence of solvent or any additive carried out over Ni on different types of supports namely SiO2, hydroxyapatite, SBA-15, and USY Zeolites. The oxidation of ethylbenzene activities was measured in a round bottom flask immersed in oil bath at known reaction temperature. The physicochemical characteristics of the catalysts were examined by BET surface area, XRD, FT-IR and the oxidation activities were correlated with the acidities of the catalysts obtained by TPD of NH3. It was observed that both hydroxyapatite and USY (13% Na2O) supported Ni catalysts displayed higher ethylbenzene conversion and 80% selectivity towards acetophenone.
文摘Calcium hydroxyapatite(HAp) supported cobalt and cobalt-cerium catalysts were examined for hydrogen production in glycerol steam reforming. The catalysts were synthesized by incipient wetness impregnation method and characterized through X-ray diffraction, adsorption-desorption isotherms of N2 and temperature-programmed reduction of H2. Catalytic properties were examined in terms of glycerol conversion, selectivity toward hydrogen and C-containing products in temperature range of 650-800 ℃.The effect of active metal reduction and residence time(thereby flow feed rate) was analysed. It was found that the growth of residence time increased the hydrogen selectivity in the whole temperatures range whereas the catalyst reduction, before the catalytic process, decreased the hydrogen selectivity at temperatures lower than 750 ℃. The cerium addition improved the catalytic behaviour for hydrogen production via glycerol steam reforming. Cerium oxide suppressed the sintering of cobalt particles and as a result Co-Ce/HAp ensured higher stability and H2 selectivity than Co/HAp. Under reaction conditions investigated in this study, the highest selectivity toward hydrogen at 650 ℃ was obtained for 7.5 Co-Ce/HAp catalyst.
基金supported by the National Natural Science Foundation of China (Grant Nos.51604089,51874110,22173066,21903058)the Natural Science Foundation of Heilongjiang Province (Grant No.YQ2021B004)Open Project of State Key Laboratory of Urban Water Resource and Environment (Grant No.QA202138)。
文摘Solid polymer electrolytes(SPEs)are one of the most promising alternatives to flammable liquid electrolytes for building safe Li metal batteries.Nevertheless,the poor ionic conductivity at room temperature(RT)and low resistance to Li dendrites seriously hinder the commercialization of SPEs.Herein,we design a bifunctional flame retardant SPE by combining hydroxyapatite(HAP)nanomaterials with Nmethyl pyrrolidone(NMP)in the PVDF-HFP matrix.The addition of HAP generates a hydrogen bond network with the PVDF-HFP matrix and cooperates with NMP to facilitate the dissociation of Li TFSI in the PVDF-HFP matrix.Consequently,the prepared SPE demonstrates superior ionic conductivity at RT,excellent fireproof properties,and strong resistance to Li dendrites.The assembled Li symmetric cell with prepared SPE exhibits a stable cycling performance of over 1200 h at 0.2 m A cm^(-2),and the solid-state LiFePO_4||Li cell shows excellent capacity retention of 85.3%over 600 cycles at 0.5 C.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11005151)the National Natural Science Foundation of China(Grant No.11347110)+2 种基金the Open Research Fund of the Key Lab of Broadband Wireless Communication and Sensor Network Technology of Ministry of Education,Nanjing University of Posts and Telecommunications,China(Grant No.NYKL201303)the Scientific Research Foundation of Nanjing University of Posts and Telecommunications,China(Grant No.NY213054)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Nano-Ag incorporated hydroxyapatite/titania (HA/TiO2) coatings were deposited on Ti6A14V substrates by the plasma electrolytic oxidation process. Compared with the substrate, the deposited coatings display attractive mechani- cal and biomedical properties. First, the coatings have stronger wear resistance and corrosion resistance. Second, they show a strong antibacterial ability. The mean vitality of the P. gingivalis on the coating surfaces is reduced to about 21%. Third, the coatings have good biocompatibility. The mean viability of the fibroblast cells on the coating surface is increased to about 130%. With these attractive properties, Ag incorporated HA/TiO2 coatings may be useful in the biomedical field.
基金support from the National Natural Science Foundation of China(21773061,21978095)Innovation Program of Shanghai Municipal Education Commission(15ZZ031)the Fundamental Research Funds for the Central Universities。
文摘Selective oxidation of glycerol provides a feasible route towards the sustainable synthesis of high value-added chemicals.Herein,the hydroxyapatite(HAP)supported palladium(Pd)species were fabricated by impregnation and subsequent calcination.The as-obtained heterogeneous Pd catalyst afforded not only excellent selectivity to glyceric acid(GLA)up to 90%with 59%conversion of glycerol but also good recyclability by using molecular oxygen as an oxidant under mild conditions.The characterization of catalysts indicated that both the surface basicity and Pd sites on the catalyst played a crucial role in promoting glycerol oxidation.Notably,it demonstrated that the presence of the vicinal hydroxyl group of glycerol molecule can assist the oxidation reaction via forming a coordination between the vicinal hydroxyl group and Ca^(2+) sites on HAP-derived catalysts.In this catalytic process,the secondary hydroxyl of glycerol kept untouched and the primary hydroxyl of glycerol was converted into carboxyl group,while the Pd species acted as active centers for cooperatively promoting the subsequent oxidation to generate GLA.Additionally,this catalytic system can be extended widely for the oxidative conversion of other vicinal diols into the corresponding a-hydroxycarboxylic acids selectively.Isotope labeling experiment using H_(2)^(18)O confirmed that H_(2)O not only acted as solvent but also was involved in the catalytic cycles.On the basis of the results,a possible reaction mechanism has been proposed.The HAP-supported Pd catalytic system has been shown to serve as an effective approach for the upgrading of bio-derived vicinal diols to high value-added chemicals.
基金support from Na-tional Nature Science Foundation of China (50535050) Program for New Century Excellent Talents in University (NCET-06-0479).
文摘Wear particles of ultrahigh molecular weight polyethylene (UHMWPE) are the main cause of long-term failure of total joint replacements. Therefore, increasing its wear resistance or bioactivity will be very useful in order to obtain high quality artificial joints. In our study, UHMWPE composites filled with the bovine bone hydroxyapatite (BHA) were prepared by the method of compression moulding. A ball-on-disc wear test was carried out with a Universal Micro-Tribometer to investigate the friction and wear behavior of a Si3N4 ceramic ball, cross-sliding against the UHMWPE/BHA composites with human plasma lubrication. At the same time, the profiles of the worn grooves on the UHMWPE/BHA surface were scanned. The experimental results indicate that the addition of BHA to UHMWPE had a significant effect on the biotribological behavior of UHMWPE cross-sliding against the Si3N4 ceramic ball. The addition of BHA powder enhanced the hardness and modulus of elasticity of these composites and decreased the friction coefficients and wear rates under conditions of human plasma lubrication. When the added amount of BHA powders was up to 20%-30%, UHMWPE/BHA composites demonstrated the designed performance of the mechanical properties and biotribological behavior.
基金supported by the National Natural Science Foundation of China (Grants Nos.50901029 and 10874092)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20070055066)+2 种基金the Natural Science Foundation of Tianjin,China (Grant No.09JCYBJC13900)the Natural Science Foundation of Hebei Province,China (Grant No.E2008000072)Hebei Education Department Research Plan (Grant No.Z2008305)
文摘Pure Ti plate surfaces are micro-ablated by femtosecond lasers in the ambience of hydroxyapatite suspension. It is found that three-stage hierarchical surface structures are produced with various laser energies. When the laser energy is 150μJ, a lava-like structure with a distribution of nanoholes is dispersed evenly on the laser ablated surface. While in the case of 300 μJ, the grooves-and-islands micro-patterns covered with nanoparticles are generated on the surface. Remarkably, Ca/P based substances are revealed to firmly deposit on the micro-structured surfaces. More phosphate growth is seen for the higher laser energy. Discussions suggest that the additional elements deposition could be attributed to the chemical reaction of plasma related ions in the suspension and their subsequent crystallisation on the fresh surfaces of Ti plate due to the femtosecond laser ablation.
文摘Adsorption of a promising bone tumor therapeutic agent 153Sm-EDTMP (ethylene diamine tetramethylene phosphonic acid) and effects of several coexisting substances on adsorption and desorption were investigated using HA (hydroxyapatite) as an in vitro model. The adsorption is quantitative up to total deposition of 40 μmol/g HA, while nonquantitative when the complex concentration is above 40μmol/g HA in the medium of pH=7.0±0.2. The uptake increases significantly with the Ca ions added. Desorption of the adsorped complexes is in the sequence of EDTMP DTPA > EDTA. Two modes of adsorption of 153Sm-EDTMP on HA are suggested, the first one ( 40μmol/g HA) quantitatively covers the available surface and the second, by which, is less efficient, additional complexes are adsorped. Non-qualltitative adsorption is attributed to Coulomb repulsion while the complex concentration ranging from 40 to 80 μmol/g HA.
文摘Objective: To evaluate the osteocompatibility of D, L-polylactic/hydroxyapatite/decalcifying bone matrix (PDLLA/HA/DBM), and compare with PDLLA and DBM. Methods: Human primary osteoblasts isolated from the femoral head of patients were inoculated onto PDLLA/HA/DBM, PLA and DBM respectively. The proliferation rate and collagen Ⅰ expression were detected. The interface between biomaterial and osteoblasts was investigated with phase contrast microscopy and electron scanning microscopy. Results: Best proliferation rate was observed with the PDLLA/HA/DBM and followed by DBM and PLA, suggesting that PDLLA/HA/DBM satisfying most requirements for the cultivation of human osteoblasts. Scanning electron microscopy showed the morphology of osteoblasts was correlated with the proliferation data. The cells, well spread and flattened, were attached closely on the surface of biomaterial with an arched structure and had normal morphology. The extracellular collagenous matrixs covered the surface of biomaterial and packed the granules of biomaterial. Conclusion: PDLLA/HA/DBM can form osteointerface early and have a good biocompability.