In this paper,we are mainly devoted to solving fixed point problems in more general nonconvex sets via an interior point homotopy method.Under suitable conditions,a constructive proof is given to prove the existence o...In this paper,we are mainly devoted to solving fixed point problems in more general nonconvex sets via an interior point homotopy method.Under suitable conditions,a constructive proof is given to prove the existence of fixed points,which can lead to an implementable globally convergent algorithm.展开更多
We present a new reliable analytical study for solving the discontinued problems arising in nanotechnology. Such problems are presented as nonlinear differential-difference equations. The proposed method is based on t...We present a new reliable analytical study for solving the discontinued problems arising in nanotechnology. Such problems are presented as nonlinear differential-difference equations. The proposed method is based on the Laplace trans- form with the homotopy analysis method (HAM). This method is a powerful tool for solving a large amount of problems. This technique provides a series of functions which may converge to the exact solution of the problem. A good agreement between the obtained solution and some well-known results is obtained.展开更多
This paper studies the generalized Kawahara equation in terms of the approximate homotopy symmetry method and the approximate homotopy direct method. Using both methods it obtains the similarity reduction solutions an...This paper studies the generalized Kawahara equation in terms of the approximate homotopy symmetry method and the approximate homotopy direct method. Using both methods it obtains the similarity reduction solutions and similarity reduction equations of different orders, showing that the approximate homotopy direct method yields more general approximate similarity reductions than the approximate homotopy symmetry method. The homotopy series solutions to the generalized Kawahara equation are consequently derived.展开更多
The Homotopy analysis method is applied to obtain the approximate solution of the Klein-Gordon Schrodinger equation. The Homotopy analysis solutions of the Klein-Gordon Schrodinger equation contain an auxiliary parame...The Homotopy analysis method is applied to obtain the approximate solution of the Klein-Gordon Schrodinger equation. The Homotopy analysis solutions of the Klein-Gordon Schrodinger equation contain an auxiliary parameter which provides a convenient way to control the convergence region and rate of the series solutions. Through errors analysis and numerical simulation, we can see the approximate solution is very close to the exact solution.展开更多
The Homotopy analysis method (HAM) is adopted to find the approximate analytical solutions of the Gross- Pitaevskii equation, a nonlinear Schrodinger equation is used in simulation of Bose-Einstein condensates trapp...The Homotopy analysis method (HAM) is adopted to find the approximate analytical solutions of the Gross- Pitaevskii equation, a nonlinear Schrodinger equation is used in simulation of Bose-Einstein condensates trapped in a harmonic potential. Comparisons between the analytical solutions and the numerical solutions have been made. The results indicate that they fit very well with each other when the atomic interaction is weak.展开更多
Based on the homotopy mapping, a globally convergent method of parameter inversion for non-equilibrium convection-dispersion equations (CDEs) is developed. Moreover, in order to further improve the computational eff...Based on the homotopy mapping, a globally convergent method of parameter inversion for non-equilibrium convection-dispersion equations (CDEs) is developed. Moreover, in order to further improve the computational efficiency of the algorithm, a properly smooth function, which is derived from the sigmoid function, is employed to update the homotopy parameter during iteration. Numerical results show the feature of global convergence and high performance of this method. In addition, even the measurement quantities are heavily contaminated by noises, and a good solution can be found.展开更多
The Navier-Stokes equations for slip flow between two very closely spaced parallel plates are transformed to an ordinary differential equation based on the pressure gradient along the flow direction using a new simila...The Navier-Stokes equations for slip flow between two very closely spaced parallel plates are transformed to an ordinary differential equation based on the pressure gradient along the flow direction using a new similarity transformation. A powerful easy-to-use homotopy analysis method was used to obtain an analytical solution. The convergence theorem for the homotopy analysis method is presented. The solutions show that the second-order homotopy analysis method solution is accurate enough for the current problem.展开更多
A method for determining symbolic and all numerical solutions in design optimization based on monotonicity analysis and solving polynomial systems is presented in this paper. Groebner Bases of the algebraic system equ...A method for determining symbolic and all numerical solutions in design optimization based on monotonicity analysis and solving polynomial systems is presented in this paper. Groebner Bases of the algebraic system equivalent to the subproblem of the design optimization is taken as the symbolic (analytical) expression of the optimum solution for the symbolic optimization, i.e. the problem with symbolic coefficients. A method based on substituting and eliminating for determining Groebner Bases is also proposed, and method for finding all numerical optimum solutions is discussed. Finally an example is given, demonstrating the strategy and efficiency of the method.展开更多
Investigations on thin-film flow play a vital role in the field of optoelectronics and magnetic devices.Thin films are reasonably hard and thermally stable but quite fragile.The thermal stability of a thin film can be...Investigations on thin-film flow play a vital role in the field of optoelectronics and magnetic devices.Thin films are reasonably hard and thermally stable but quite fragile.The thermal stability of a thin film can be further improved by incorporating the effects of nanoparticles.In the current work,a stretchable surface is considered upon which hybrid nanofluid thin-film flow is taken into account.The idea of augmenting heat transmission by making use of a hybrid nanofluid is a focus of the current work.The flow is affected by variations in the viscous forces,along with viscous dissipation effects and Marangoni convection.A time-constrained magnetic field is applied in the normal direction to the flow system.The equations governing the flow system are shifted to a non-dimensional form by applying similarity variables.The homotopy analysis method is employed to find the solution to the resultant equations.It is noticed in this study that the flow characteristics decline with augmentation of magnetic,viscosity and unsteadiness parameters while they increase with enhanced values of thin-film parameters.Thermal characteristics are supported by increasing values of the Eckert number and the unsteadiness parameter and opposed by the viscosity parameter and Prandtl number.The numerical impact of different emerging parameters upon skin friction and the Nusselt number is calculated in tabular form.A comparison of current work with established results is carried out,with good agreement.展开更多
A steady-state roll motion of ships with nonlinear damping and restoring moments for all times is modeled by a second-order nonlinear differential equation.Analytical expressions for the roll angle,velocity,accelerati...A steady-state roll motion of ships with nonlinear damping and restoring moments for all times is modeled by a second-order nonlinear differential equation.Analytical expressions for the roll angle,velocity,acceleration,and damping and restoring moments are derived using a modified approach of homotopy perturbation method(HPM).Also,the operational matrix of derivatives of ultraspherical wavelets is used to obtain a numerical solution of the governing equation.Illustrative examples are provided to examine the applicability and accuracy of the proposed methods when compared with a highly accurate numerical scheme.展开更多
An analytic method, i.e. the homotopy analysis method, was applied for constructing the solutions of the short waves model equations associated with the Degasperis-Procesi (DP) shallow water waves equation. The explic...An analytic method, i.e. the homotopy analysis method, was applied for constructing the solutions of the short waves model equations associated with the Degasperis-Procesi (DP) shallow water waves equation. The explicit analytic solutions of loop soliton governing the propagation of short waves were obtained. By means of the transformation of independent variables, an analysis one-loop soliton solution expressed by a series of exponential functions was obtained, which agreed well with the exact solution. The results reveal the validity and great potential of the homotopy analysis method in solving complicated solitary water wave problems.展开更多
The approximate solution of the magneto-hydrodynamic (MHD) boundary layer flow over a nonlinear stretching sheet is obtained by combining the Lie symmetry method with the homotopy perturbation method. The approximat...The approximate solution of the magneto-hydrodynamic (MHD) boundary layer flow over a nonlinear stretching sheet is obtained by combining the Lie symmetry method with the homotopy perturbation method. The approximate solution is tabulated, plotted for the values of various parameters and compared with the known solutions. It is found that the approximate solution agrees very well with the known numerical solutions, showing the reliability and validity of the present work.展开更多
The fractional derivatives in the sense of Caputo and the homotopy analysis method are used to construct an approximate solution for the nonlinear space-time fractional derivatives Klein-Gordon equation. The numerical...The fractional derivatives in the sense of Caputo and the homotopy analysis method are used to construct an approximate solution for the nonlinear space-time fractional derivatives Klein-Gordon equation. The numerical results show that the approaches are easy to implement and accurate when applied to the nonlinear space-time fractional derivatives Klein- Gordon equation. This method introduces a promising tool for solving many space-time fractional partial differential equations. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.展开更多
基金Supported by the NNSF of China(11026079)Supported by the Youth Backbone Teacher Foundation of Henan Province(173)
文摘In this paper,we are mainly devoted to solving fixed point problems in more general nonconvex sets via an interior point homotopy method.Under suitable conditions,a constructive proof is given to prove the existence of fixed points,which can lead to an implementable globally convergent algorithm.
文摘We present a new reliable analytical study for solving the discontinued problems arising in nanotechnology. Such problems are presented as nonlinear differential-difference equations. The proposed method is based on the Laplace trans- form with the homotopy analysis method (HAM). This method is a powerful tool for solving a large amount of problems. This technique provides a series of functions which may converge to the exact solution of the problem. A good agreement between the obtained solution and some well-known results is obtained.
基金Project supported by the National Natural Science Foundations of China(Grant Nos.10735030,10475055,10675065 and 90503006)the National Basic Research Program of China(Grant No.2007CB814800)
文摘This paper studies the generalized Kawahara equation in terms of the approximate homotopy symmetry method and the approximate homotopy direct method. Using both methods it obtains the similarity reduction solutions and similarity reduction equations of different orders, showing that the approximate homotopy direct method yields more general approximate similarity reductions than the approximate homotopy symmetry method. The homotopy series solutions to the generalized Kawahara equation are consequently derived.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10735030)National Basic Research Program of China (Grant No. 2007CB814800)+1 种基金Ningbo Natural Science Foundation (Grant No. 2008A610017)K.C. Wong Magna Fund in Ningbo University
文摘The Homotopy analysis method is applied to obtain the approximate solution of the Klein-Gordon Schrodinger equation. The Homotopy analysis solutions of the Klein-Gordon Schrodinger equation contain an auxiliary parameter which provides a convenient way to control the convergence region and rate of the series solutions. Through errors analysis and numerical simulation, we can see the approximate solution is very close to the exact solution.
基金Project supported by the National Natural Science Foundation of China(Grant No.11047010)the Key Project Foundation of the Education Ministry of China(Grant No.209128)
文摘The Homotopy analysis method (HAM) is adopted to find the approximate analytical solutions of the Gross- Pitaevskii equation, a nonlinear Schrodinger equation is used in simulation of Bose-Einstein condensates trapped in a harmonic potential. Comparisons between the analytical solutions and the numerical solutions have been made. The results indicate that they fit very well with each other when the atomic interaction is weak.
基金Supported by the K C Wang Education of Foundation of Hong Kong, and the National Natural Science Foundation of China under Grant Nos 10402043 and 10372106.
文摘Based on the homotopy mapping, a globally convergent method of parameter inversion for non-equilibrium convection-dispersion equations (CDEs) is developed. Moreover, in order to further improve the computational efficiency of the algorithm, a properly smooth function, which is derived from the sigmoid function, is employed to update the homotopy parameter during iteration. Numerical results show the feature of global convergence and high performance of this method. In addition, even the measurement quantities are heavily contaminated by noises, and a good solution can be found.
基金Supported by the National Natural Science Foundation of China under Grant Nos 50776006.
文摘The Navier-Stokes equations for slip flow between two very closely spaced parallel plates are transformed to an ordinary differential equation based on the pressure gradient along the flow direction using a new similarity transformation. A powerful easy-to-use homotopy analysis method was used to obtain an analytical solution. The convergence theorem for the homotopy analysis method is presented. The solutions show that the second-order homotopy analysis method solution is accurate enough for the current problem.
文摘A method for determining symbolic and all numerical solutions in design optimization based on monotonicity analysis and solving polynomial systems is presented in this paper. Groebner Bases of the algebraic system equivalent to the subproblem of the design optimization is taken as the symbolic (analytical) expression of the optimum solution for the symbolic optimization, i.e. the problem with symbolic coefficients. A method based on substituting and eliminating for determining Groebner Bases is also proposed, and method for finding all numerical optimum solutions is discussed. Finally an example is given, demonstrating the strategy and efficiency of the method.
基金funding this work through research groups(Grant No.RGP.1/260/42)。
文摘Investigations on thin-film flow play a vital role in the field of optoelectronics and magnetic devices.Thin films are reasonably hard and thermally stable but quite fragile.The thermal stability of a thin film can be further improved by incorporating the effects of nanoparticles.In the current work,a stretchable surface is considered upon which hybrid nanofluid thin-film flow is taken into account.The idea of augmenting heat transmission by making use of a hybrid nanofluid is a focus of the current work.The flow is affected by variations in the viscous forces,along with viscous dissipation effects and Marangoni convection.A time-constrained magnetic field is applied in the normal direction to the flow system.The equations governing the flow system are shifted to a non-dimensional form by applying similarity variables.The homotopy analysis method is employed to find the solution to the resultant equations.It is noticed in this study that the flow characteristics decline with augmentation of magnetic,viscosity and unsteadiness parameters while they increase with enhanced values of thin-film parameters.Thermal characteristics are supported by increasing values of the Eckert number and the unsteadiness parameter and opposed by the viscosity parameter and Prandtl number.The numerical impact of different emerging parameters upon skin friction and the Nusselt number is calculated in tabular form.A comparison of current work with established results is carried out,with good agreement.
基金The authors are thankful to Shri J.Ramachandran,Chancellor,Col.Dr.G.Thiruvasagam,Vice-Chancellor,Academy of Maritime Education and Training(AMET),Deemed to be University,Chennai,for their support.
文摘A steady-state roll motion of ships with nonlinear damping and restoring moments for all times is modeled by a second-order nonlinear differential equation.Analytical expressions for the roll angle,velocity,acceleration,and damping and restoring moments are derived using a modified approach of homotopy perturbation method(HPM).Also,the operational matrix of derivatives of ultraspherical wavelets is used to obtain a numerical solution of the governing equation.Illustrative examples are provided to examine the applicability and accuracy of the proposed methods when compared with a highly accurate numerical scheme.
基金Supported by the Natural Science Foundation of China under the grant 11026165 and 11072053Doctaral Fund of Ministry of Education of China under the grant 20100041120037the Fundamental Research Funds for the Central Universities
文摘An analytic method, i.e. the homotopy analysis method, was applied for constructing the solutions of the short waves model equations associated with the Degasperis-Procesi (DP) shallow water waves equation. The explicit analytic solutions of loop soliton governing the propagation of short waves were obtained. By means of the transformation of independent variables, an analysis one-loop soliton solution expressed by a series of exponential functions was obtained, which agreed well with the exact solution. The results reveal the validity and great potential of the homotopy analysis method in solving complicated solitary water wave problems.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11071159) and the College Science Research Project of Inner Mongolia, China (Grant No. NJzy08180).
文摘The approximate solution of the magneto-hydrodynamic (MHD) boundary layer flow over a nonlinear stretching sheet is obtained by combining the Lie symmetry method with the homotopy perturbation method. The approximate solution is tabulated, plotted for the values of various parameters and compared with the known solutions. It is found that the approximate solution agrees very well with the known numerical solutions, showing the reliability and validity of the present work.
文摘The fractional derivatives in the sense of Caputo and the homotopy analysis method are used to construct an approximate solution for the nonlinear space-time fractional derivatives Klein-Gordon equation. The numerical results show that the approaches are easy to implement and accurate when applied to the nonlinear space-time fractional derivatives Klein- Gordon equation. This method introduces a promising tool for solving many space-time fractional partial differential equations. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.