Objective To evaluate the optic nerve impairment using MRI histogram texture analysis in the patients with optic neuritis.Methods The study included 60 patients with optic neuritis and 20 normal controls. The coronal ...Objective To evaluate the optic nerve impairment using MRI histogram texture analysis in the patients with optic neuritis.Methods The study included 60 patients with optic neuritis and 20 normal controls. The coronal T2 weighted imaging(T2 WI) with fat saturation and enhanced T1 weighted imaging(T1 WI) were performed to evaluate the optic nerve. MRI histogram texture features of the involved optic nerve were measured on the corresponding coronal T2 WI images. The normal optic nerve(NON) was measured in the posterior 1/3 parts of the optic nerve. Kruskal-Wallis one-way ANOVA was used to compare the difference of texture features and receiver operating characteristic(ROC) curve were performed to evaluate the diagnostic value of texture features for the optic nerve impairment among the affected optic nerve with enhancement(ONwEN), affected optic nerve without enhancement(ONwoEN), contralateral normal appearing optic nerve(NAON) and NON. Results The histogram texture Energy and Entropy presented significant differences for ONwEN vs. ONwoEN(both P = 0.000), ONwEN vs. NON(both P = 0.000) and NAON vs. NON(both P < 0.05). ROC analysis demonstrated that the area under the curve(AUC) of histogram texture Energy were 0.758, 0.795 and 0.701 for ONwEN vs. ONwoEN, ONwEN vs. NON and NAON vs. NON, AUC of Entropy were 0.758, 0.795 and 0.707 for ONwEN vs. ONwoEN, ONwEN vs. NON and NAON vs. NON.Conclusion The altered MRI histogram texture Energy and Entropy could be considered as a surrogate for MRI enhancement to evaluate the involved optic nerve and normal-appearing optic nerve in optic neuritis.展开更多
A new gray-spatial histogram is proposed, which incorporates spatial informatio n with gray compositions without sacrificing the robustness of traditional gray histograms. The purpose is to consider the representation...A new gray-spatial histogram is proposed, which incorporates spatial informatio n with gray compositions without sacrificing the robustness of traditional gray histograms. The purpose is to consider the representation role of gray compositi ons and spatial information simultaneously. Each entry in the gray-spatial hist ogram is the gray frequency and corresponding position information of images. In the experiments of sonar image recognition, the results show that the gray-spa tial histogram is effective in practical use.展开更多
The S/N of an underwater image is low and has a fuzzy edge.If using traditional methods to process it directly,the result is not satisfying.Though the traditional fuzzy C-means algorithm can sometimes divide the image...The S/N of an underwater image is low and has a fuzzy edge.If using traditional methods to process it directly,the result is not satisfying.Though the traditional fuzzy C-means algorithm can sometimes divide the image into object and background,its time-consuming computation is often an obstacle.The mission of the vision system of an autonomous underwater vehicle (AUV) is to rapidly and exactly deal with the information about the object in a complex environment for the AUV to use the obtained result to execute the next task.So,by using the statistical characteristics of the gray image histogram,a fast and effective fuzzy C-means underwater image segmentation algorithm was presented.With the weighted histogram modifying the fuzzy membership,the above algorithm can not only cut down on a large amount of data processing and storage during the computation process compared with the traditional algorithm,so as to speed up the efficiency of the segmentation,but also improve the quality of underwater image segmentation.Finally,particle swarm optimization (PSO) described by the sine function was introduced to the algorithm mentioned above.It made up for the shortcomings that the FCM algorithm can not get the global optimal solution.Thus,on the one hand,it considers the global impact and achieves the local optimal solution,and on the other hand,further greatly increases the computing speed.Experimental results indicate that the novel algorithm can reach a better segmentation quality and the processing time of each image is reduced.They enhance efficiency and satisfy the requirements of a highly effective,real-time AUV.展开更多
This paper presents one novel spatial geometric constraints histogram descriptors (SGCHD) based on curvature mesh graph for automatic three-dimensional (3D) pollen particles recognition. In order to reduce high di...This paper presents one novel spatial geometric constraints histogram descriptors (SGCHD) based on curvature mesh graph for automatic three-dimensional (3D) pollen particles recognition. In order to reduce high dimensionality and noise disturbance arising from the abnormal record approach under microscopy, the separated surface curvature voxels are ex- tracted as primitive features to represent the original 3D pollen particles, which can also greatly reduce the computation time for later feature extraction process. Due to the good invariance to pollen rotation and scaling transformation, the spatial geometric constraints vectors are calculated to describe the spatial position correlations of the curvature voxels on the 3D curvature mesh graph. For exact similarity evaluation purpose, the bidirectional histogram algorithm is applied to the spatial geometric constraints vectors to obtain the statistical histogram descriptors with fixed dimensionality, which is invariant to the number and the starting position of the curvature voxels. Our experimental results compared with the traditional methods validate the argument that the presented descriptors are invariant to different pollen particles geometric transformations (such as posing change and spatial rotation), and high recognition precision and speed can be obtained simultaneously.展开更多
A new improved algorithm of histogram equalization was discussed and actualized by analyzing the traditional algorithm. This improved algorithm has better effect than the traditional one, especially it is used to proc...A new improved algorithm of histogram equalization was discussed and actualized by analyzing the traditional algorithm. This improved algorithm has better effect than the traditional one, especially it is used to process poor quality images.展开更多
AB-chromaticity histogram analysis works well most of the time, but it may not work well when the color cast is not severe. To overcome this problem, we propose an improved, two-step automatic cast-detection method. F...AB-chromaticity histogram analysis works well most of the time, but it may not work well when the color cast is not severe. To overcome this problem, we propose an improved, two-step automatic cast-detection method. First, we compute the RGB color variance to evaluate the quality of the input image. If this variance is very small, we extract near-neutral color areas and compute the local ab-chromaticity histogram. We use this local ab-chromaticity histogram to evaluate the quality of the input image. This method has been tested in ZTE' s video surveil- lance system. The results show that the proposed method pro- duces better results based on subjective evaluation and is more efficient in various conditions.展开更多
Steganography is a technique that conceals secret data into a cover medium for delivering secret data over public computer networks. Reversible data hiding schemes not only can achieve secret data delivery, but also c...Steganography is a technique that conceals secret data into a cover medium for delivering secret data over public computer networks. Reversible data hiding schemes not only can achieve secret data delivery, but also can restore the cover medium. Histogram shifting is one of the most popular reversible data hiding techniques. Luo et ai. presented a reversible data hiding technique that shifts the histogram of prediction error. But the embedding payload of Luo et al.'s method can further be improved. The proposed method uses a difference segmentation strategy and pseudo pixel generation to increase the height of peak in the prediction error histogram. The experimental results show that the embedding payload of the proposed method is higher than that of Luo et aL's method.展开更多
To explore the potential of conventional image processing techniques in the classification of cervical cancer cells, in this work, a co-occurrence histogram method was employed for image feature extraction and an ense...To explore the potential of conventional image processing techniques in the classification of cervical cancer cells, in this work, a co-occurrence histogram method was employed for image feature extraction and an ensemble classifier was developed by combining the base classifiers, namely, the artificial neural network(ANN),random forest(RF), and support vector machine(SVM), for image classification. The segmented pap-smear cell image dataset was constructed by the k-means clustering technique and used to evaluate the performance of the ensemble classifier which was formed by the combination of above considered base classifiers. The result was also compared with that achieved by the individual base classifiers as well as that trained with color, texture, and shape features. The maximum average classification accuracy of 93.44% was obtained when the ensemble classifier was applied and trained with co-occurrence histogram features, which indicates that the ensemble classifier trained with co-occurrence histogram features is more suitable and advantageous for the classification of cervical cancer cells.展开更多
A novel method of histogram analysis for background extraction in video image is proposed, which is derived from the pixelbased histogram analysis. Not only the statistical property of pixels between temporal frames, ...A novel method of histogram analysis for background extraction in video image is proposed, which is derived from the pixelbased histogram analysis. Not only the statistical property of pixels between temporal frames, but also the corrvlation of local pixels in a single frame is exploited in this method. When carrying out histogram analysis for background extraction, the proposed method is not based on a single pixel but on a 2 × 2 block that has much less computational quantities and can extract a sound background image from video sequence simultaneously. A comparative experiment between the proposed method and the pixel-based histogram analysis shows that the proposed method has a faster speed in background extraction and the obtained background image is better in quantity.展开更多
A new algorithm taking the spatial context of local features into account by utilizing contextualized histograms was proposed to recognize facial expression. The contextualized histograms were extracted fromtwo widely...A new algorithm taking the spatial context of local features into account by utilizing contextualized histograms was proposed to recognize facial expression. The contextualized histograms were extracted fromtwo widely used descriptors—the local binary pattern( LBP) and weber local descriptor( WLD). The LBP and WLD feature histograms were extracted separately fromeach facial image,and contextualized histogram was generated as feature vectors to feed the classifier. In addition,the human face was divided into sub-blocks and each sub-block was assigned different weights by their different contributions to the intensity of facial expressions to improve the recognition rate. With the support vector machine(SVM) as classifier,the experimental results on the 2D texture images fromthe 3D-BU FE dataset indicated that contextualized histograms improved facial expression recognition performance when local features were employed.展开更多
Image enhancement methods are typically aimed at improvement of the overall visibility of features. Though histogram equalization can enhance the contrast by redistributing the gray levels, it has the drawback that it...Image enhancement methods are typically aimed at improvement of the overall visibility of features. Though histogram equalization can enhance the contrast by redistributing the gray levels, it has the drawback that it reduces the information in the processed image. In this paper, we present a new image enhancement algorithm. After histogram equalization is carried out, morphological filters and wavelet-based enhancement algorithm is used to clean out the unwanted details and further enhance the image and compensate for the information loss during histogram equalization. Experimental results show that the morphological filters and wavelet-based histogram equalization algorithm can significantly enhance the contrast and increase the information entropy of the image.展开更多
文摘Objective To evaluate the optic nerve impairment using MRI histogram texture analysis in the patients with optic neuritis.Methods The study included 60 patients with optic neuritis and 20 normal controls. The coronal T2 weighted imaging(T2 WI) with fat saturation and enhanced T1 weighted imaging(T1 WI) were performed to evaluate the optic nerve. MRI histogram texture features of the involved optic nerve were measured on the corresponding coronal T2 WI images. The normal optic nerve(NON) was measured in the posterior 1/3 parts of the optic nerve. Kruskal-Wallis one-way ANOVA was used to compare the difference of texture features and receiver operating characteristic(ROC) curve were performed to evaluate the diagnostic value of texture features for the optic nerve impairment among the affected optic nerve with enhancement(ONwEN), affected optic nerve without enhancement(ONwoEN), contralateral normal appearing optic nerve(NAON) and NON. Results The histogram texture Energy and Entropy presented significant differences for ONwEN vs. ONwoEN(both P = 0.000), ONwEN vs. NON(both P = 0.000) and NAON vs. NON(both P < 0.05). ROC analysis demonstrated that the area under the curve(AUC) of histogram texture Energy were 0.758, 0.795 and 0.701 for ONwEN vs. ONwoEN, ONwEN vs. NON and NAON vs. NON, AUC of Entropy were 0.758, 0.795 and 0.707 for ONwEN vs. ONwoEN, ONwEN vs. NON and NAON vs. NON.Conclusion The altered MRI histogram texture Energy and Entropy could be considered as a surrogate for MRI enhancement to evaluate the involved optic nerve and normal-appearing optic nerve in optic neuritis.
文摘A new gray-spatial histogram is proposed, which incorporates spatial informatio n with gray compositions without sacrificing the robustness of traditional gray histograms. The purpose is to consider the representation role of gray compositi ons and spatial information simultaneously. Each entry in the gray-spatial hist ogram is the gray frequency and corresponding position information of images. In the experiments of sonar image recognition, the results show that the gray-spa tial histogram is effective in practical use.
基金Supported by the National Natural Science Foundation of China under Grant No.50909025/E091002the Open Research Foundation of SKLab AUV, HEU under Grant No.2008003
文摘The S/N of an underwater image is low and has a fuzzy edge.If using traditional methods to process it directly,the result is not satisfying.Though the traditional fuzzy C-means algorithm can sometimes divide the image into object and background,its time-consuming computation is often an obstacle.The mission of the vision system of an autonomous underwater vehicle (AUV) is to rapidly and exactly deal with the information about the object in a complex environment for the AUV to use the obtained result to execute the next task.So,by using the statistical characteristics of the gray image histogram,a fast and effective fuzzy C-means underwater image segmentation algorithm was presented.With the weighted histogram modifying the fuzzy membership,the above algorithm can not only cut down on a large amount of data processing and storage during the computation process compared with the traditional algorithm,so as to speed up the efficiency of the segmentation,but also improve the quality of underwater image segmentation.Finally,particle swarm optimization (PSO) described by the sine function was introduced to the algorithm mentioned above.It made up for the shortcomings that the FCM algorithm can not get the global optimal solution.Thus,on the one hand,it considers the global impact and achieves the local optimal solution,and on the other hand,further greatly increases the computing speed.Experimental results indicate that the novel algorithm can reach a better segmentation quality and the processing time of each image is reduced.They enhance efficiency and satisfy the requirements of a highly effective,real-time AUV.
基金supported by the National Natural Science Foundation of China(Grant No.61375030)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20090149)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province,China(Grant No.08KJD520019)
文摘This paper presents one novel spatial geometric constraints histogram descriptors (SGCHD) based on curvature mesh graph for automatic three-dimensional (3D) pollen particles recognition. In order to reduce high dimensionality and noise disturbance arising from the abnormal record approach under microscopy, the separated surface curvature voxels are ex- tracted as primitive features to represent the original 3D pollen particles, which can also greatly reduce the computation time for later feature extraction process. Due to the good invariance to pollen rotation and scaling transformation, the spatial geometric constraints vectors are calculated to describe the spatial position correlations of the curvature voxels on the 3D curvature mesh graph. For exact similarity evaluation purpose, the bidirectional histogram algorithm is applied to the spatial geometric constraints vectors to obtain the statistical histogram descriptors with fixed dimensionality, which is invariant to the number and the starting position of the curvature voxels. Our experimental results compared with the traditional methods validate the argument that the presented descriptors are invariant to different pollen particles geometric transformations (such as posing change and spatial rotation), and high recognition precision and speed can be obtained simultaneously.
文摘A new improved algorithm of histogram equalization was discussed and actualized by analyzing the traditional algorithm. This improved algorithm has better effect than the traditional one, especially it is used to process poor quality images.
文摘AB-chromaticity histogram analysis works well most of the time, but it may not work well when the color cast is not severe. To overcome this problem, we propose an improved, two-step automatic cast-detection method. First, we compute the RGB color variance to evaluate the quality of the input image. If this variance is very small, we extract near-neutral color areas and compute the local ab-chromaticity histogram. We use this local ab-chromaticity histogram to evaluate the quality of the input image. This method has been tested in ZTE' s video surveil- lance system. The results show that the proposed method pro- duces better results based on subjective evaluation and is more efficient in various conditions.
基金supported by Asia University under Grant No.100-asia-33
文摘Steganography is a technique that conceals secret data into a cover medium for delivering secret data over public computer networks. Reversible data hiding schemes not only can achieve secret data delivery, but also can restore the cover medium. Histogram shifting is one of the most popular reversible data hiding techniques. Luo et ai. presented a reversible data hiding technique that shifts the histogram of prediction error. But the embedding payload of Luo et al.'s method can further be improved. The proposed method uses a difference segmentation strategy and pseudo pixel generation to increase the height of peak in the prediction error histogram. The experimental results show that the embedding payload of the proposed method is higher than that of Luo et aL's method.
文摘To explore the potential of conventional image processing techniques in the classification of cervical cancer cells, in this work, a co-occurrence histogram method was employed for image feature extraction and an ensemble classifier was developed by combining the base classifiers, namely, the artificial neural network(ANN),random forest(RF), and support vector machine(SVM), for image classification. The segmented pap-smear cell image dataset was constructed by the k-means clustering technique and used to evaluate the performance of the ensemble classifier which was formed by the combination of above considered base classifiers. The result was also compared with that achieved by the individual base classifiers as well as that trained with color, texture, and shape features. The maximum average classification accuracy of 93.44% was obtained when the ensemble classifier was applied and trained with co-occurrence histogram features, which indicates that the ensemble classifier trained with co-occurrence histogram features is more suitable and advantageous for the classification of cervical cancer cells.
文摘A novel method of histogram analysis for background extraction in video image is proposed, which is derived from the pixelbased histogram analysis. Not only the statistical property of pixels between temporal frames, but also the corrvlation of local pixels in a single frame is exploited in this method. When carrying out histogram analysis for background extraction, the proposed method is not based on a single pixel but on a 2 × 2 block that has much less computational quantities and can extract a sound background image from video sequence simultaneously. A comparative experiment between the proposed method and the pixel-based histogram analysis shows that the proposed method has a faster speed in background extraction and the obtained background image is better in quantity.
基金Supported by the National Natural Science Foundation of China(60772066)
文摘A new algorithm taking the spatial context of local features into account by utilizing contextualized histograms was proposed to recognize facial expression. The contextualized histograms were extracted fromtwo widely used descriptors—the local binary pattern( LBP) and weber local descriptor( WLD). The LBP and WLD feature histograms were extracted separately fromeach facial image,and contextualized histogram was generated as feature vectors to feed the classifier. In addition,the human face was divided into sub-blocks and each sub-block was assigned different weights by their different contributions to the intensity of facial expressions to improve the recognition rate. With the support vector machine(SVM) as classifier,the experimental results on the 2D texture images fromthe 3D-BU FE dataset indicated that contextualized histograms improved facial expression recognition performance when local features were employed.
文摘Image enhancement methods are typically aimed at improvement of the overall visibility of features. Though histogram equalization can enhance the contrast by redistributing the gray levels, it has the drawback that it reduces the information in the processed image. In this paper, we present a new image enhancement algorithm. After histogram equalization is carried out, morphological filters and wavelet-based enhancement algorithm is used to clean out the unwanted details and further enhance the image and compensate for the information loss during histogram equalization. Experimental results show that the morphological filters and wavelet-based histogram equalization algorithm can significantly enhance the contrast and increase the information entropy of the image.