In this work,using the Hirota bilinear method,N-soliton solution is obtained for Hirota-Satsuma nonlinear evolution equation:u_t - u_(xxt) - 3u_xu_t + u_x = 0.
This paper applies the variational iteration method to obtain approximate analytic solutions of a generalized Hirota-Satsuma coupled Korteweg-de Vries (KdV) equation and a coupled modified Korteweg-de Vries (mKdV)...This paper applies the variational iteration method to obtain approximate analytic solutions of a generalized Hirota-Satsuma coupled Korteweg-de Vries (KdV) equation and a coupled modified Korteweg-de Vries (mKdV) equation. This method provides a sequence Of functions which converges to the exact solution of the problem and is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Some examples are given to demonstrate the reliability and convenience of the method and comparisons are made with the exact solutions.展开更多
基金Foundation item: Supported by the Natural Science Foundation of China(61072147, 11071159) Supported by the Shanghai Leading Academic Discipline Project(J50101) Supported by the Youth Foundation of Zhoukou Normal University(zknuqn200917)
文摘In this work,using the Hirota bilinear method,N-soliton solution is obtained for Hirota-Satsuma nonlinear evolution equation:u_t - u_(xxt) - 3u_xu_t + u_x = 0.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10771019 and 10826107)
文摘This paper applies the variational iteration method to obtain approximate analytic solutions of a generalized Hirota-Satsuma coupled Korteweg-de Vries (KdV) equation and a coupled modified Korteweg-de Vries (mKdV) equation. This method provides a sequence Of functions which converges to the exact solution of the problem and is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Some examples are given to demonstrate the reliability and convenience of the method and comparisons are made with the exact solutions.