Background: The fragile landscapes of the Himalayan region are highly susceptible to natural hazards, and there is ongoing concern about current and potential climate change impacts. This study provides background in...Background: The fragile landscapes of the Himalayan region are highly susceptible to natural hazards, and there is ongoing concern about current and potential climate change impacts. This study provides background information on India's Western Himalayas and reviews evidence of warming as well as variability in precipitation and extreme events.Methods: Understanding and anticipating the impacts of climate change on Himalayan forest ecosystems and the services they provide to people are critical. Efforts to develop and implement effective policies and management strategies for climate change mitigation and adaptation requires particular new research initiatives. The various studies initiated and conducted in the region are compiled here.Results: Several new initiatives taken by the Himalayan Forest Research Institute in Shimla are described. This includes new permanent observational field studies, some with mapped trees, in high altitude transitional zones for continuous monitoring of vegetation response. We have also presented new strategies for mitigating potential climate change effects in Himalayan forest ecosystems.Conclusions: Assessment of the ecological and genetic diversity of the Himalayan conifers is required to evaluate potential responses to changing climatic conditions. Conservation strategies for the important temperate medicinal plants need to be developed. The impact of climate change on insects and pathogens in the Himalayas also need to be assessed. Coordinated efforts are necessary to develop effective strategies for adaptation and mitigation.展开更多
We investigated the phytosociology, structure and dynamics of Pinus roxburghii in 40 stands in northern areas of Pakistan by using cluster analysis (Ward’s agglomerative clustering) and ordination (Non-metric Mult...We investigated the phytosociology, structure and dynamics of Pinus roxburghii in 40 stands in northern areas of Pakistan by using cluster analysis (Ward’s agglomerative clustering) and ordination (Non-metric Multidimensional Scaling). Cluster analysis revealed three major groups associated with specific environmental characteristics: (1) P. roxburghii (2) Pinus-Quercus baloot and (3) Pinus-Olea ferruginea community types. NMS-ordination showed the major gradient as an amalgam of elevation (r2=0.441, p<0.01) and slope (r2=0.391, p<0.05) as the two topographic factors correlated with species distribution. The first ordination axis also showed positive correlation with soil variables like pH and electrical conductivity, suggesting that soil chemistry was related to topographic characteristics and probably acted as a secondary gradient. We also examined size class distributions, age structures and growth rates of the three communities in order to describe community development and dynamics. Total tree density was 14700 plants/ha, with P. roxburghii having a relative density of 82%to 100%. Density of juve-nile and total density and basal area of the subordinate tree species were low. The low density of trees in the smallest diameter size-class sug-gested that the recruitment of small P. roxburghii plants into the adult population may be lower than the required replacement rate for the stands. Pooled size-class distributions for the species showed a multimo-dal pattern with some regeneration gaps. Browsing, heavy logging and other anthropogenic activities were the overriding factors responsible for the poor recruitment of P. roxburghii. We concluded from the age struc-ture that the forests were characterized by the dominance of young trees. Growth rate analysis revealed that P. roxburghii was the fastest growing species among the conifers species in Pakistan. In view of its relatively fast growth and longevity, P. roxburghii seems to be a suitable choice for short-term cultural practices in order to enhance wood production in lesser Himalaya and Hindukush ranges of Pakistan.展开更多
文摘Background: The fragile landscapes of the Himalayan region are highly susceptible to natural hazards, and there is ongoing concern about current and potential climate change impacts. This study provides background information on India's Western Himalayas and reviews evidence of warming as well as variability in precipitation and extreme events.Methods: Understanding and anticipating the impacts of climate change on Himalayan forest ecosystems and the services they provide to people are critical. Efforts to develop and implement effective policies and management strategies for climate change mitigation and adaptation requires particular new research initiatives. The various studies initiated and conducted in the region are compiled here.Results: Several new initiatives taken by the Himalayan Forest Research Institute in Shimla are described. This includes new permanent observational field studies, some with mapped trees, in high altitude transitional zones for continuous monitoring of vegetation response. We have also presented new strategies for mitigating potential climate change effects in Himalayan forest ecosystems.Conclusions: Assessment of the ecological and genetic diversity of the Himalayan conifers is required to evaluate potential responses to changing climatic conditions. Conservation strategies for the important temperate medicinal plants need to be developed. The impact of climate change on insects and pathogens in the Himalayas also need to be assessed. Coordinated efforts are necessary to develop effective strategies for adaptation and mitigation.
文摘We investigated the phytosociology, structure and dynamics of Pinus roxburghii in 40 stands in northern areas of Pakistan by using cluster analysis (Ward’s agglomerative clustering) and ordination (Non-metric Multidimensional Scaling). Cluster analysis revealed three major groups associated with specific environmental characteristics: (1) P. roxburghii (2) Pinus-Quercus baloot and (3) Pinus-Olea ferruginea community types. NMS-ordination showed the major gradient as an amalgam of elevation (r2=0.441, p<0.01) and slope (r2=0.391, p<0.05) as the two topographic factors correlated with species distribution. The first ordination axis also showed positive correlation with soil variables like pH and electrical conductivity, suggesting that soil chemistry was related to topographic characteristics and probably acted as a secondary gradient. We also examined size class distributions, age structures and growth rates of the three communities in order to describe community development and dynamics. Total tree density was 14700 plants/ha, with P. roxburghii having a relative density of 82%to 100%. Density of juve-nile and total density and basal area of the subordinate tree species were low. The low density of trees in the smallest diameter size-class sug-gested that the recruitment of small P. roxburghii plants into the adult population may be lower than the required replacement rate for the stands. Pooled size-class distributions for the species showed a multimo-dal pattern with some regeneration gaps. Browsing, heavy logging and other anthropogenic activities were the overriding factors responsible for the poor recruitment of P. roxburghii. We concluded from the age struc-ture that the forests were characterized by the dominance of young trees. Growth rate analysis revealed that P. roxburghii was the fastest growing species among the conifers species in Pakistan. In view of its relatively fast growth and longevity, P. roxburghii seems to be a suitable choice for short-term cultural practices in order to enhance wood production in lesser Himalaya and Hindukush ranges of Pakistan.