In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introduc...In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.展开更多
A typical adaptive neural control methodology is used for the rigid body model of the hypersonic vehicle. The rigid body model is divided into the altitude subsystem and the velocity subsystem. The proportional integr...A typical adaptive neural control methodology is used for the rigid body model of the hypersonic vehicle. The rigid body model is divided into the altitude subsystem and the velocity subsystem. The proportional integral differential(PID) controller is introduced to control the velocity track. The backstepping design is applied for constructing the controllers for the altitude subsystem.To avoid the explosion of differentiation from backstepping, the higher-order filter dynamic is used for replacing the virtual controller in the backstepping design steps. In the design procedure,the radial basis function(RBF) neural network is investigated to approximate the unknown nonlinear functions in the system dynamic of the hypersonic vehicle. The simulations show the effectiveness of the design method.展开更多
This paper develops electro-elastic relations of functionally graded cylindrical nanoshell integrated with intelligent layers subjected to multi-physics loads resting on elastic foundation.The piezoelectric layers are...This paper develops electro-elastic relations of functionally graded cylindrical nanoshell integrated with intelligent layers subjected to multi-physics loads resting on elastic foundation.The piezoelectric layers are actuated with external applied voltage.The nanocore is assumed in-homogeneous in which the material properties are changed continuously and gradually along radial direction.Third-order shear deformation theory is used for the description of kinematic relations and electric potential distribution is assumed as combination of a linear function along thickness direction to show applied voltage and a longitudinal distribution.Electro-elastic size-dependent constitutive relations are developed based on nonlocal elasticity theory and generalized Hooke’s law.The principle of virtual work is used to derive governing equations in terms of four functions along the axial and the radial directions and longitudinal electric potential function.The numerical results including radial and longitudinal displacements are presented in terms of basic input parameters of the integrated cylindrical nanoshell such as initial electric potential,small scale parameter,length to radius ratio and two parameters of foundation.It is concluded that both displacements are increased with an increase in small-scale parameter and a decrease in applied electric potential.展开更多
The principle and design method of Denisov-type quasi-optical mode converter is investigated indetail.The operation process of the Denisov-type launcher is analyzed by applying the geometrical optics,andthe Gaussian-l...The principle and design method of Denisov-type quasi-optical mode converter is investigated indetail.The operation process of the Denisov-type launcher is analyzed by applying the geometrical optics,andthe Gaussian-like field distribution achieved on the waveguide wall is also derived.The method for designing arippled-wall launcher is proposed on the basis of coupled mode theory.A simulation code for Denisov-type qua-si-optical mode converter GQOMC-D is developed based on coupled mode theory,vector diffraction integrationand physical optics,which is compared to the design parameters and experimental results reported in literaturefor its validity.According to this code,a Denisov-type quasi-optical mode converter used in 110 GHz TE22.6mode gyrotron oscillators is designed.Simulation results indicate that a Gaussian-like beam is obtained at theoutput window with a scalar content of 98.4%and a conversion efficiency of 94.7%.展开更多
Since the multi-layered structures are widely used nowadays, and due to interesting applications of cylindrical shells, this study is dedicated to analyzing free vibrational behaviors of functionally graded saturated ...Since the multi-layered structures are widely used nowadays, and due to interesting applications of cylindrical shells, this study is dedicated to analyzing free vibrational behaviors of functionally graded saturated porous micro cylindrical shells with two nanocomposite skins. Based on Biot's assumptions, constitutive relations for the core are presented and effective properties of the skins are determined via the rule of mixture. A sinusoidal theory is used to capture the shear deformation effects, and to account for the scale effects, the modified couple stress theory is employed which suggests a material length-scale parameter for predicting the results in small-dimension. With the aid of extended form of Hamilton's principle for dynamic systems, differential equations of motion are extracted. Fourier series functions are used to obtain natural frequencies and after validating them, a set of parametric studies are carried out. The results show the significant effects of porosity and Skempton coefficient, pores placement patterns, CNTs addition and distribution patterns, temperature variations, material length-scale parameter and viscoelastic medium on the natural frequencies of the microstructure. The outcomes of this work could be used to design and manufacture more reliable micro cylindrical structures in thermo-dynamical environments.展开更多
We have examined the theoretical implications of combining two main and three auxiliary ligands to form several Ir(Ⅲ)complexes featuring a transition metal as their core atom to identify some appropriate organic ligh...We have examined the theoretical implications of combining two main and three auxiliary ligands to form several Ir(Ⅲ)complexes featuring a transition metal as their core atom to identify some appropriate organic lightemitting diode(OLED)materials.By utilizing electronic structure,frontier molecular orbitals,minimum single-line absorption,triplet excited states,and emission spectral data derived from the density functional theory,the usefulness of these Ir(Ⅲ)complexes,including(piq)_(2)Ir(acac),(piq)_(2)Ir(tmd),(piq)_(2)Ir(tpip),(fpiq)_(2)Ir(acac),(fpiq)_(2)Ir(tmd),and(fpiq)_(2)Ir(tpip),in OLEDs was examined,where piq=1-phenylisoquinoline,fpiq=1-(4-fluorophenyl)isoquinoline,acac=(3Z)-4-hydroxypent-3-en-2-one,tmd=(4Z)-5-hydroxy-2,2,6,6-tetramethylhept-4-en-3-one,and tpip=tetraphenylimido-diphosphonate.These complexes all have low-efficiency roll-off properties,especially(fpiq)_(2)Ir(tpip).Some researchers have successfully synthesized complexes extremely similar to(piq)_(2)Ir(acac)through the Suzuki-Miyaura coupling reaction.展开更多
The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying t...The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying traditional maximum equivalent span beam(MESB)theory to determine deformation range,peak point,and angle influence poses a challenge.Considering the overall structure of the intersection roof,the maximum equivalent triangular plate(METP)theory is proposed,and its geometric parameter calculation formula and deflection calculation formula are obtained.The application of the two theories in 18 models with different intersection angles,roadway types,and surrounding rock lithology is verified by numerical analysis.The results show that:1)The METP structure of the intersection roof established by the simulation results of each model successfully determined the location of the roof’s high displacement zone;2)The area comparison method of the METP theory can be reasonably explained:①The roof subsidence of the intersection decreases with the increase of the intersection angle;②The roof subsidence at the intersection of different roadway types has a rectangular type>arch type>circular type;③The roof subsidence of the intersection with weak surrounding rock is significantly larger than that of the intersection with hard surrounding rock.According to the application results of the two theories,the four advantages of the METP theory are compared and clarified in the basic assumptions,mechanical models,main viewpoints,and mechanism analysis.The large deformation inducement of the intersection roof is then explored.The J 2 peak area of the roof drives the large deformation of the area,the peak point of which is consistent with the center of gravity position of the METP.Furthermore,the change in the range of this peak is consistent with the change law of the METP’s area.Hence,this theory clarifies the large deformation area of the intersection roof,which provides a clear guiding basis for its initial support design,mid-term monitoring,and late local reinforcement.展开更多
Eugene Nida’s dynamic equivalence translation theory has become a mainstream in translation theory field, and is found applied in various fields. The paper is to discuss its application in translating foreign film na...Eugene Nida’s dynamic equivalence translation theory has become a mainstream in translation theory field, and is found applied in various fields. The paper is to discuss its application in translating foreign film names.展开更多
An improvement method for the combining rule of Dempster evidence theory is proposed. Different from Dempster theory, the reliability of evidences isn't identical; and varies with the event. By weight evidence acc...An improvement method for the combining rule of Dempster evidence theory is proposed. Different from Dempster theory, the reliability of evidences isn't identical; and varies with the event. By weight evidence according to their reliability, the effect of unreliable evidence is reduced, and then get the fusion result that is closer to the truth. An example to expand the advantage of this method is given. The example proves that this method is helpful to find a correct result.展开更多
Three fundamental problems in the calculation of train derailment abroad and at home were pointed out and the solutions to these problems were presented. The theory of random energy analysis for train derailment was s...Three fundamental problems in the calculation of train derailment abroad and at home were pointed out and the solutions to these problems were presented. The theory of random energy analysis for train derailment was suggested. The main contents of this theory are as follows: geometric criterion of derailment; method of random energy analysis of transverse vibration of train track system; mechanism of derailment and energy increment criterion for derailment evaluation; calculation of the entire derailment course of train. This theory is used to calculate a case of freight train derailment, which corresponds to an actually occurring accident. Another derailment test, in which the train is judged not to be derailed, is calculated and the maximum vibration response is well correspond to the test results. And the effectiveness and practicability of the theory are proved by the two calculated cases.展开更多
Chemical concepts such as structure,bonding,reactivity,etc.have been widely used in the literature and text books to appreciate molecular properties and chemical transformations.Even though modern theoretical and comp...Chemical concepts such as structure,bonding,reactivity,etc.have been widely used in the literature and text books to appreciate molecular properties and chemical transformations.Even though modern theoretical and computational chemistry is well established from the perspective of accuracy and complexity,how to quantify these concepts is a still unresolved task.Conceptual density functional theory and its related recent developments provide unique opportunities to tackle this problem.In this Special Issue,27 contributions from top investigators over the world are collected to highlight the state-of-art research on this topic,which not only showcases the status of where we are now but also unveils a number to possible future directions to be pursued.展开更多
Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless se...Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless sensor networks is restrictive energy, this paper proposes a distributed power control algorithm based on game theory for wireless sensor networks which objects of which are reducing power consumption and decreasing overhead and increasing network lifetime. The game theory and OPNET simulation shows that the power control algorithm converges to a Nash Equilibrium when decisions are updated according to a better response dynamic.展开更多
In Quantum Information Theory(QIT) the classical measures of information content in probability distributions are replaced by the corresponding resultant entropic descriptors containing the nonclassical terms generate...In Quantum Information Theory(QIT) the classical measures of information content in probability distributions are replaced by the corresponding resultant entropic descriptors containing the nonclassical terms generated by the state phase or its gradient(electronic current). The classical Shannon(S[p]) and Fisher(I[p]) information terms probe the entropic content of incoherent local events of the particle localization, embodied in the probability distribution p, while their nonclassical phase-companions, S[ Φ ] and I[ Φ ], provide relevant coherence information supplements.Thermodynamic-like couplings between the entropic and energetic descriptors of molecular states are shown to be precluded by the principles of quantum mechanics. The maximum of resultant entropy determines the phase-equilibrium state, defined by "thermodynamic" phase related to electronic density,which can be used to describe reactants in hypothetical stages of a bimolecular chemical reaction.Information channels of molecular systems and their entropic bond indices are summarized, the complete-bridge propagations are examined, and sequential cascades involving the complete sets of the atomic-orbital intermediates are interpreted as Markov chains. The QIT description is applied to reactive systems R = A―B, composed of the Acidic(A) and Basic(B) reactants. The electronegativity equalization processes are investigated and implications of the concerted patterns of electronic flows in equilibrium states of the complementarily arranged substrates are investigated. Quantum communications between reactants are explored and the QIT descriptors of the A―B bond multiplicity/composition are extracted.展开更多
基金Supported by the National Natural Science Foundation of China(12061048)NSF of Jiangxi Province(20232BAB201026,20232BAB201018)。
文摘In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.
基金supported by the National Natural Science Foundation of China (61903374)。
文摘A typical adaptive neural control methodology is used for the rigid body model of the hypersonic vehicle. The rigid body model is divided into the altitude subsystem and the velocity subsystem. The proportional integral differential(PID) controller is introduced to control the velocity track. The backstepping design is applied for constructing the controllers for the altitude subsystem.To avoid the explosion of differentiation from backstepping, the higher-order filter dynamic is used for replacing the virtual controller in the backstepping design steps. In the design procedure,the radial basis function(RBF) neural network is investigated to approximate the unknown nonlinear functions in the system dynamic of the hypersonic vehicle. The simulations show the effectiveness of the design method.
基金supported by the Research team project of Nanning University(2018KYTD03)the Science and Technology Planning Project of Yongning Zone of Nanning(20180205A)Henan Province Doctor Startup Fund of China under Grant No.2012BZ01.
文摘This paper develops electro-elastic relations of functionally graded cylindrical nanoshell integrated with intelligent layers subjected to multi-physics loads resting on elastic foundation.The piezoelectric layers are actuated with external applied voltage.The nanocore is assumed in-homogeneous in which the material properties are changed continuously and gradually along radial direction.Third-order shear deformation theory is used for the description of kinematic relations and electric potential distribution is assumed as combination of a linear function along thickness direction to show applied voltage and a longitudinal distribution.Electro-elastic size-dependent constitutive relations are developed based on nonlocal elasticity theory and generalized Hooke’s law.The principle of virtual work is used to derive governing equations in terms of four functions along the axial and the radial directions and longitudinal electric potential function.The numerical results including radial and longitudinal displacements are presented in terms of basic input parameters of the integrated cylindrical nanoshell such as initial electric potential,small scale parameter,length to radius ratio and two parameters of foundation.It is concluded that both displacements are increased with an increase in small-scale parameter and a decrease in applied electric potential.
基金supported by National Natural Science Foundation of China(61102026)Science&Technology Research Project of Chongqing Municipal Educntional Commission of China(KJ120505)
文摘The principle and design method of Denisov-type quasi-optical mode converter is investigated indetail.The operation process of the Denisov-type launcher is analyzed by applying the geometrical optics,andthe Gaussian-like field distribution achieved on the waveguide wall is also derived.The method for designing arippled-wall launcher is proposed on the basis of coupled mode theory.A simulation code for Denisov-type qua-si-optical mode converter GQOMC-D is developed based on coupled mode theory,vector diffraction integrationand physical optics,which is compared to the design parameters and experimental results reported in literaturefor its validity.According to this code,a Denisov-type quasi-optical mode converter used in 110 GHz TE22.6mode gyrotron oscillators is designed.Simulation results indicate that a Gaussian-like beam is obtained at theoutput window with a scalar content of 98.4%and a conversion efficiency of 94.7%.
文摘Since the multi-layered structures are widely used nowadays, and due to interesting applications of cylindrical shells, this study is dedicated to analyzing free vibrational behaviors of functionally graded saturated porous micro cylindrical shells with two nanocomposite skins. Based on Biot's assumptions, constitutive relations for the core are presented and effective properties of the skins are determined via the rule of mixture. A sinusoidal theory is used to capture the shear deformation effects, and to account for the scale effects, the modified couple stress theory is employed which suggests a material length-scale parameter for predicting the results in small-dimension. With the aid of extended form of Hamilton's principle for dynamic systems, differential equations of motion are extracted. Fourier series functions are used to obtain natural frequencies and after validating them, a set of parametric studies are carried out. The results show the significant effects of porosity and Skempton coefficient, pores placement patterns, CNTs addition and distribution patterns, temperature variations, material length-scale parameter and viscoelastic medium on the natural frequencies of the microstructure. The outcomes of this work could be used to design and manufacture more reliable micro cylindrical structures in thermo-dynamical environments.
文摘We have examined the theoretical implications of combining two main and three auxiliary ligands to form several Ir(Ⅲ)complexes featuring a transition metal as their core atom to identify some appropriate organic lightemitting diode(OLED)materials.By utilizing electronic structure,frontier molecular orbitals,minimum single-line absorption,triplet excited states,and emission spectral data derived from the density functional theory,the usefulness of these Ir(Ⅲ)complexes,including(piq)_(2)Ir(acac),(piq)_(2)Ir(tmd),(piq)_(2)Ir(tpip),(fpiq)_(2)Ir(acac),(fpiq)_(2)Ir(tmd),and(fpiq)_(2)Ir(tpip),in OLEDs was examined,where piq=1-phenylisoquinoline,fpiq=1-(4-fluorophenyl)isoquinoline,acac=(3Z)-4-hydroxypent-3-en-2-one,tmd=(4Z)-5-hydroxy-2,2,6,6-tetramethylhept-4-en-3-one,and tpip=tetraphenylimido-diphosphonate.These complexes all have low-efficiency roll-off properties,especially(fpiq)_(2)Ir(tpip).Some researchers have successfully synthesized complexes extremely similar to(piq)_(2)Ir(acac)through the Suzuki-Miyaura coupling reaction.
基金Project(52204164)supported by the National Natural Science Foundation of ChinaProject(2021QNRC001)supported by the Young Elite Scientists Sponsorship Program by CAST,China。
文摘The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying traditional maximum equivalent span beam(MESB)theory to determine deformation range,peak point,and angle influence poses a challenge.Considering the overall structure of the intersection roof,the maximum equivalent triangular plate(METP)theory is proposed,and its geometric parameter calculation formula and deflection calculation formula are obtained.The application of the two theories in 18 models with different intersection angles,roadway types,and surrounding rock lithology is verified by numerical analysis.The results show that:1)The METP structure of the intersection roof established by the simulation results of each model successfully determined the location of the roof’s high displacement zone;2)The area comparison method of the METP theory can be reasonably explained:①The roof subsidence of the intersection decreases with the increase of the intersection angle;②The roof subsidence at the intersection of different roadway types has a rectangular type>arch type>circular type;③The roof subsidence of the intersection with weak surrounding rock is significantly larger than that of the intersection with hard surrounding rock.According to the application results of the two theories,the four advantages of the METP theory are compared and clarified in the basic assumptions,mechanical models,main viewpoints,and mechanism analysis.The large deformation inducement of the intersection roof is then explored.The J 2 peak area of the roof drives the large deformation of the area,the peak point of which is consistent with the center of gravity position of the METP.Furthermore,the change in the range of this peak is consistent with the change law of the METP’s area.Hence,this theory clarifies the large deformation area of the intersection roof,which provides a clear guiding basis for its initial support design,mid-term monitoring,and late local reinforcement.
文摘Eugene Nida’s dynamic equivalence translation theory has become a mainstream in translation theory field, and is found applied in various fields. The paper is to discuss its application in translating foreign film names.
文摘An improvement method for the combining rule of Dempster evidence theory is proposed. Different from Dempster theory, the reliability of evidences isn't identical; and varies with the event. By weight evidence according to their reliability, the effect of unreliable evidence is reduced, and then get the fusion result that is closer to the truth. An example to expand the advantage of this method is given. The example proves that this method is helpful to find a correct result.
基金TheNationalNaturalScienceFoundationofChina (No .5 0 0 780 0 6) FoundationoftheScienceandTechnologySectionoftheRailwayBureauofChina (No .2 0 0 1G0 2 9)
文摘Three fundamental problems in the calculation of train derailment abroad and at home were pointed out and the solutions to these problems were presented. The theory of random energy analysis for train derailment was suggested. The main contents of this theory are as follows: geometric criterion of derailment; method of random energy analysis of transverse vibration of train track system; mechanism of derailment and energy increment criterion for derailment evaluation; calculation of the entire derailment course of train. This theory is used to calculate a case of freight train derailment, which corresponds to an actually occurring accident. Another derailment test, in which the train is judged not to be derailed, is calculated and the maximum vibration response is well correspond to the test results. And the effectiveness and practicability of the theory are proved by the two calculated cases.
基金We are immensely indebted to the Editor-in-Chief as well as the entire crew of the Editorial Office of Acta Physico-Chimica Sinica for making the Special Issue possible. I am in particular grateful to Dr. Xiaojuan Zhang, the Managing Editor, and Dr. Ying
文摘Chemical concepts such as structure,bonding,reactivity,etc.have been widely used in the literature and text books to appreciate molecular properties and chemical transformations.Even though modern theoretical and computational chemistry is well established from the perspective of accuracy and complexity,how to quantify these concepts is a still unresolved task.Conceptual density functional theory and its related recent developments provide unique opportunities to tackle this problem.In this Special Issue,27 contributions from top investigators over the world are collected to highlight the state-of-art research on this topic,which not only showcases the status of where we are now but also unveils a number to possible future directions to be pursued.
文摘Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless sensor networks is restrictive energy, this paper proposes a distributed power control algorithm based on game theory for wireless sensor networks which objects of which are reducing power consumption and decreasing overhead and increasing network lifetime. The game theory and OPNET simulation shows that the power control algorithm converges to a Nash Equilibrium when decisions are updated according to a better response dynamic.
文摘In Quantum Information Theory(QIT) the classical measures of information content in probability distributions are replaced by the corresponding resultant entropic descriptors containing the nonclassical terms generated by the state phase or its gradient(electronic current). The classical Shannon(S[p]) and Fisher(I[p]) information terms probe the entropic content of incoherent local events of the particle localization, embodied in the probability distribution p, while their nonclassical phase-companions, S[ Φ ] and I[ Φ ], provide relevant coherence information supplements.Thermodynamic-like couplings between the entropic and energetic descriptors of molecular states are shown to be precluded by the principles of quantum mechanics. The maximum of resultant entropy determines the phase-equilibrium state, defined by "thermodynamic" phase related to electronic density,which can be used to describe reactants in hypothetical stages of a bimolecular chemical reaction.Information channels of molecular systems and their entropic bond indices are summarized, the complete-bridge propagations are examined, and sequential cascades involving the complete sets of the atomic-orbital intermediates are interpreted as Markov chains. The QIT description is applied to reactive systems R = A―B, composed of the Acidic(A) and Basic(B) reactants. The electronegativity equalization processes are investigated and implications of the concerted patterns of electronic flows in equilibrium states of the complementarily arranged substrates are investigated. Quantum communications between reactants are explored and the QIT descriptors of the A―B bond multiplicity/composition are extracted.