This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(H...This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(HOSVD) approach.The design of hypersonic flight control systems is highly challenging due to the enormous complexity of the vehicle dynamics and the presence of significant uncertainties.Motivated by recent results on both LPV control and tensor-product(TP) model transformation approach,the velocity and altitude tracking control problems for the air-breathing hypersonic vehicle is reduced to that of a state feedback stabilizing controller design for a polytopic LPV system with guaranteed performances.The controller implementation is converted into a convex optimization problem with parameterdependent linear matrix inequalities(LMIs) constraints,which is intuitively tractable using LMI control toolbox.Finally,numerical simulation results demonstrate the effectiveness of the proposed approach.展开更多
针对短相干积累时间(coherent integration time,CIT)引起的多普勒分辨率低,无法从强大海杂波中检测出舰船目标的问题,提出了基于高阶奇异值分解(higher order singular value decomposition,HOSVD)的海杂波抑制算法。首先利用相邻单元...针对短相干积累时间(coherent integration time,CIT)引起的多普勒分辨率低,无法从强大海杂波中检测出舰船目标的问题,提出了基于高阶奇异值分解(higher order singular value decomposition,HOSVD)的海杂波抑制算法。首先利用相邻单元内海杂波的相干性,将毗邻距离单元和方位单元的多脉冲接收数据应用三阶张量表示,然后采用HOSVD方法求解三阶张量的海杂波子空间和目标子空间的投影矩阵,最后利用投影矩阵将三阶张量映射到目标子空间以抑制海杂波。该方法与现有子空间类海杂波抑制方法相比,提高了信干噪比(signal to clutter plus noise ratio,SCNR)和峰值旁瓣电平比(peak sidelobe level ratio,PSLR),解决了目标谱峰偏移问题。展开更多
针对极化敏感阵列信号波达方向(direction of arrival,DOA)估计问题,提出了一种基于塔克张量域序贯截断高阶奇异值分解的正则极化旋转不变参数估计(Tucker tensor based regularized polarimetric estimation of signal parameters via ...针对极化敏感阵列信号波达方向(direction of arrival,DOA)估计问题,提出了一种基于塔克张量域序贯截断高阶奇异值分解的正则极化旋转不变参数估计(Tucker tensor based regularized polarimetric estimation of signal parameters via rotational invariance technique,trpESPRIT)方法。首先对阵列接收信号进行塔克张量建模,之后通过序贯截断高阶奇异值分解获得塔克张量域信号子空间,最后利用多旋转不变子空间幅相关系获得信号DOA估计。相比于传统矩阵建模方法,塔克张量建模更便于组织多维数据结构,实现高维的数据匹配操作,而序贯截断高阶奇异值分解则可以获得更高的信号子空间估计精度以及后续的DOA估计。仿真结果表明,trpESPRIT方法较之常规矩阵方法和矢量方法可以更好地抑制噪声,具有更高的信号DOA估计精度,在低信噪比和低快拍条件下仍然具有良好的分辨能力。展开更多
基金supported by the National Natural Science Foundation of China(6120300761304239+1 种基金61503392)the Natural Science Foundation of Shaanxi Province(2015JQ6213)
文摘This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(HOSVD) approach.The design of hypersonic flight control systems is highly challenging due to the enormous complexity of the vehicle dynamics and the presence of significant uncertainties.Motivated by recent results on both LPV control and tensor-product(TP) model transformation approach,the velocity and altitude tracking control problems for the air-breathing hypersonic vehicle is reduced to that of a state feedback stabilizing controller design for a polytopic LPV system with guaranteed performances.The controller implementation is converted into a convex optimization problem with parameterdependent linear matrix inequalities(LMIs) constraints,which is intuitively tractable using LMI control toolbox.Finally,numerical simulation results demonstrate the effectiveness of the proposed approach.
文摘针对短相干积累时间(coherent integration time,CIT)引起的多普勒分辨率低,无法从强大海杂波中检测出舰船目标的问题,提出了基于高阶奇异值分解(higher order singular value decomposition,HOSVD)的海杂波抑制算法。首先利用相邻单元内海杂波的相干性,将毗邻距离单元和方位单元的多脉冲接收数据应用三阶张量表示,然后采用HOSVD方法求解三阶张量的海杂波子空间和目标子空间的投影矩阵,最后利用投影矩阵将三阶张量映射到目标子空间以抑制海杂波。该方法与现有子空间类海杂波抑制方法相比,提高了信干噪比(signal to clutter plus noise ratio,SCNR)和峰值旁瓣电平比(peak sidelobe level ratio,PSLR),解决了目标谱峰偏移问题。
文摘针对极化敏感阵列信号波达方向(direction of arrival,DOA)估计问题,提出了一种基于塔克张量域序贯截断高阶奇异值分解的正则极化旋转不变参数估计(Tucker tensor based regularized polarimetric estimation of signal parameters via rotational invariance technique,trpESPRIT)方法。首先对阵列接收信号进行塔克张量建模,之后通过序贯截断高阶奇异值分解获得塔克张量域信号子空间,最后利用多旋转不变子空间幅相关系获得信号DOA估计。相比于传统矩阵建模方法,塔克张量建模更便于组织多维数据结构,实现高维的数据匹配操作,而序贯截断高阶奇异值分解则可以获得更高的信号子空间估计精度以及后续的DOA估计。仿真结果表明,trpESPRIT方法较之常规矩阵方法和矢量方法可以更好地抑制噪声,具有更高的信号DOA估计精度,在低信噪比和低快拍条件下仍然具有良好的分辨能力。