Background The data on the prognostic values of high sensitivity C-reactive protein (hsCRP) levels in patients with advanced symp-tomatic heart failure (HF) receiving cardiac resynchronization therapy (CRT) are ...Background The data on the prognostic values of high sensitivity C-reactive protein (hsCRP) levels in patients with advanced symp-tomatic heart failure (HF) receiving cardiac resynchronization therapy (CRT) are scarce. The aim of present study was to investigate the association of serum hsCRP levels with left ventricle reverse remodeling after six months of CRT as well as long-term outcome. Methods A total of 232 CRT patients were included. The assessment of hsCRP values, clinical status and echocardiographic data were performed at baseline and after six months of CRT. Long-term follow-up included all-cause mortality and hospitalizations for HF. Results During the mean follow-up periods of 31.3 ± 31.5 months, elevated hsCRP (〉3 mg/L) prior to CRT was associated with a significant 2.39-fold increase (P=0.006) in the risk of death or HF hospitalizations. At 6-month follow-up, patients who responded to CRT showed significant reductions or maintained low in hsCRP levels (–0.5 ± 4.1 mg/L reduction) compared with non-responders (1.7 ± 6.1 mg/L increase, P=0.018). Com-pared with patients in whom 6-month hsCRP levels were reduced or remained low, patients in whom 6-month hsCRP levels were increased or maintained high experienced a significantly higher risk of subsequent death or HF hospitalizations (Log-rank P〈0.001). The echocardio-graphic improvement was also better among patients in whom 6-month hsCRP levels were reduced or remained low compared to those in whom 6-month hsCRP levels were raised or maintained high. Conclusions Our findings demonstrated that measurement of baseline and follow-up hsCRP levels may be useful as prognostic markers for timely potential risk stratification and subsequent appropriate treatment strategies in patients with advanced HF undergoing CRT.展开更多
In direct sequence spread spectrum communication both for satelliteto-ground and inter-satellite links, the system constrains due to radio frequency spectral occupation, channel data throughput and link performances i...In direct sequence spread spectrum communication both for satelliteto-ground and inter-satellite links, the system constrains due to radio frequency spectral occupation, channel data throughput and link performances in terms of data channel coding which might result in a signal structure where the symbol duration is shorter than the pseudo code period. This can generate some difficulties in the DSSS signal acquisition due to the polarity inversion caused by the data modulation. To eliminate the influence due to polarity inversion, this paper proposes a novel acquisition algorithm based on the simultaneous search of the code phase, data phase and Doppler frequency. In the proposed algorithm the data phase is predicted and the correlation period for the coherent integration can be set equal to the symbol duration. Then non-coherent accumulation over different symbol is implemented in order to enhance the acquisition algorithm sensitivity; the interval of non-coherent accumulation is the least common multiple between the symbol duration and the pseudo code period. The algorithm proposed can largely minimize the SNR loss caused by data polarity inversion and enhance acquisition performance without a noticeable increase in hardware complexity. Theoretical analysis, simulation and measured results verify the validity of the algorithm.展开更多
Background Coronary artery disease(CAD)remains a leading cause of morbidity and mortality.Cytokines play a potential role in atherosclerosis pathogenesis and progression.We investigated the association between high se...Background Coronary artery disease(CAD)remains a leading cause of morbidity and mortality.Cytokines play a potential role in atherosclerosis pathogenesis and progression.We investigated the association between high sensitive C-reactive protein(hs CRP)and severity of CAD.Methods CAD patients were stratified according to hs CRP cut-off value into high levels hs CRP group(≥8.4 mg/L)and low levels hs CRP group(<8.4 mg/L).Severity of CAD was assessed according to artery stenosis degree and the number of vessel involved.Statistical analysis was performed using Statistical Package for the Social Sciences(SPSS,version 23.0).Results The mean age was 60.3±11.0 years.The level of hs CRP was increased and ranged from 0.2 to 1020.0 mg/L.Biochemical risk factors and severity of CAD didn’t show significant differences between the two groups.In multivariate linear analysis,cardiac troponin I(c Tn I)and serum amyloid A(SAA)were predictors of hs CRP.As shown in receiver operating characteristic(ROC)curve analysis performed in patients with ST-segment elevation myocardial infarction(STEMI)and compared to myonecrosis biomarkers,hs CRP(area under the curve(AUC):0.905;95%CI:0.844-0.966;P<0.001)could be a powerful predictor marker in evaluating the infarct size after myocardial infarction but not better than c Tn I.Conclusions Hs CRP levels were not associated with the severity of CAD but could be useful in the evaluation of myocardial necrosis in patients with STEMI.展开更多
According to the requirements of the high-sensitivity acquisition of Direct Sequence Spread Spectrum(DSSS) signals under ultrahigh dynamic environments in space communications, a three-dimensional joint search of the ...According to the requirements of the high-sensitivity acquisition of Direct Sequence Spread Spectrum(DSSS) signals under ultrahigh dynamic environments in space communications, a three-dimensional joint search of the phase of Pseudo-Noise-code(PN-code),Doppler frequency and its rate-of-change is presented to achieve high sensitivity in sensing high-frequency dynamics. By eliminating the correlation peak loss caused by ultrahigh Doppler frequency and its rate-of-change offset,the proposed method improves the acquisition sensitivity by increasing the non-coherent accumulation time. The validity of the algorithm is proved by theoretical analysis and simulation results. It is shown that signals with a carrier- to-noise ratio as low as 39 dBHz can be captured with high performance when the Doppler frequency is up to ±1 MHz and its rate-of-change is up to ±200 kHz/s.展开更多
1 Introduction Inflammation is one of the main mechanisms in the pathogenesis of atherosclerosis,and the interest to the evaluation of inflammatory biomarkers in coronary artery disease(CAD)has been increasing over th...1 Introduction Inflammation is one of the main mechanisms in the pathogenesis of atherosclerosis,and the interest to the evaluation of inflammatory biomarkers in coronary artery disease(CAD)has been increasing over the last decade.[1,2]Destabilization of chronic artery plaques,which leads to acute coronary syndromes,has been associated with inflammatory status.[1,3]。展开更多
We propose a novel high-performance digital optical sensor based on the Mach-Zehnder interferential effect and the dual-microring resonators with the waveguide-coupled feedback. The simulation results show that the se...We propose a novel high-performance digital optical sensor based on the Mach-Zehnder interferential effect and the dual-microring resonators with the waveguide-coupled feedback. The simulation results show that the sensitivity of the sensor can be orders of magnitude higher than that of aconventional sensor, and high quality factor is not critical in it. Moreover, by optimizing the length of the feedback waveguide to be equal to the perimeter of the ring, the measurement range of the proposed sensor is twice as much as that of the conventional sensor in the weak coupling case.展开更多
We propose a core rotation-sensing element for improving the sensitivity of the micro-optical gyroscope using the large nonreciprocal effect with a photonic crystal.The sharp transmission peak of electromagnetically i...We propose a core rotation-sensing element for improving the sensitivity of the micro-optical gyroscope using the large nonreciprocal effect with a photonic crystal.The sharp transmission peak of electromagnetically induced transparency in photonic crystal generated from a periodic distribution of cold atoms is sensitive to the rotation.Our numerical results show that the sensitivity of relative rotation is about 50 times higher and the sensitivity of absolute rotation is more than two orders higher than that of the traditional resonant optical gyroscope.Also,the sensitivity of the gyroscope can be manipulated by varying the atomic density,modulation frequency,probe pulse width,and photonic crystal length,etc.展开更多
A dispersion model is developed to provide a generic tool for configuring plasmonic resonance spectral characteristics.The customized design of the resonance curve aiming at specific detection requirements can be achi...A dispersion model is developed to provide a generic tool for configuring plasmonic resonance spectral characteristics.The customized design of the resonance curve aiming at specific detection requirements can be achieved.According to the model,a probe-type nano-modified fiber optic configurable plasmonic resonance(NMF-CPR)sensor with tip hot spot enhancement is demonstrated for the measurement of the refractive index in the range of 1.3332-1.3432 corresponding to the low-concentration biomarker solution.The new-type sensing structure avoids excessive broadening and redshift of the resonance dip,which provides more possibilities for the surface modification of other functional nanomaterials.The tip hot spots in nanogaps between the Au layer and Au nanostars(AuNSs),the tip electric field enhancement of AuNSs,and the high carrier mobility of the WSe_(2)layer synergistically and significantly enhance the sensitivity of the sensor.Ex-perimental results show that the sensitivity and the figure of merit of the tip hot spot enhanced fiber NMF-CPR sensor can achieve up to 2995.70 nm/RIU and 25.04 RIU^(−1),respectively,which are 1.68 times and 1.29 times higher than those of the conventional fiber plasmonic resonance sensor.The results achieve good agreements with numerical simulations,demonstrate a better level compared to similar reported studies,and verify the correctness of the dispersion model.The detection resolution of the sensor reaches up to 2.00×10^(−5)RIU,which is obviously higher than that of the conventional side-polished fiber plasmonic resonance sensor.This indicates a high detection accuracy of the sensor.The dense Au layer effectively prevents the intermediate nanomaterials from shedding and chemical degradation,which enables the sensor with high stability.Furthermore,the terminal reflective sensing structure can be used as a practical probe and can allow a more convenient operation.展开更多
Optical fiber temperature sensors have been widely employed in enormous areas ranging from electric power industry,medical treatment,ocean dynamics to aerospace.Recently,graphene optical fiber temperature sensors attr...Optical fiber temperature sensors have been widely employed in enormous areas ranging from electric power industry,medical treatment,ocean dynamics to aerospace.Recently,graphene optical fiber temperature sensors attract tremendous attention for their merits of simple structure and direct power detecting ability.However,these sensors based on transfer techniques still have limitations in the relatively low sensitivity or distortion of the transmission characteristics,due to the unsuitable Fermi level of graphene and the destruction of fiber structure,respectively.Here,we propose a tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber(Gr-PCF)with the non-destructive integration of graphene into the holes of PCF.This hybrid structure promises the intact fiber structure and transmission mode,which efficiently enhances the temperature detection ability of graphene.From our simulation,we find that the temperature sensitivity can be electrically tuned over four orders of magnitude and achieve up to~3.34×10^(-3) dB/(cm·℃)when the graphene Fermi level is~35 meV higher than half the incident photon energy.Additionally,this sensitivity can be further improved by~10 times through optimizing the PCF structure(such as the fiber hole diameter)to enhance the light–matter interaction.Our results provide a new way for the design of the highly sensitive temperature sensors and broaden applications in all-fiber optoelectronic devices.展开更多
Objective Cardiovascular complications contribute to postoperative morbidity and mortality in elderly hip fracture patients. Limited data are available regarding which preoperative risk factors predict cardiovascular ...Objective Cardiovascular complications contribute to postoperative morbidity and mortality in elderly hip fracture patients. Limited data are available regarding which preoperative risk factors predict cardiovascular course following hip fracture surgery (HFS). We used high sensitive troponin I (hs-TnI) assays and clinical parameters to identify preoperative risk factors associated with major adverse cardiac events (MACE) in elderly hip frac^u'e patients. Method From August 2014 to November 2016, 575 patients with hip fracture were enrolled in a retrospective, single-center registry. A total of 262 of these patients underwent HFS and hs-TnI assays. MACE was defined as postoperative all-cause deaths, heart failure (HF), new-onset atrial fibrillation (AF), myocardial infarction (MI) and cardiovascular re-hospitalization that occurred within 90 days postoperative. Results Of 262 HFS patients, MACE developed following HFS in 65 (24.8%). Patients with MACE were older and had higher rates of renal insufficiency, coronary artery disease, prior HF, low left ventricular ejection fraction and use of beta blockers; higher levels of hs-Tnl and N-terminal pro-brain natriuretic peptide (NT-proBNP) and higher revised cardiac risk index. A preoperative hs-TnI≥ 6.5 ng/L was associated with high risk of postoperative HF, new-onset AF and MACE. In multivariable analysis, pre-operative independent predictors for MACE were age 〉 80 years [adjusted hazard ratio (HR): 1.79, 95% confident interval (CI): 1.03-3.13, P = 0.04], left ventricular ejection fraction (LVEF) 〈 50% (adjusted HR: 3.17, 95% CI: 1.47-5.82, P 〈 0.01) and hs-TnI 〉 6.5 ng/L (adjusted HR: 3.75, 95% CI: 2.09~5.17, P 〈 0.01). Conclusion In elderly patients with hip fracture who undergo HFS, a preoperative assessment of hs-TnI may help the risk refinement of cardiovascular complications.展开更多
Objective To evaluate the effects of simvastatin combined with omega-3 fatty acids on high sensitive C-reactive protein(HsCRP), lipidemia, and fibrinolysis in coronary heart disease (CHD) and CHD risk equivalent patie...Objective To evaluate the effects of simvastatin combined with omega-3 fatty acids on high sensitive C-reactive protein(HsCRP), lipidemia, and fibrinolysis in coronary heart disease (CHD) and CHD risk equivalent patients with mixed dyslipi-demia. Methods A randomized, double-blind placebo controlled and parallel group trial was conducted. Patients with CHD and CHD risk equivalents with mixed dyslipidemia were treated with 10 or 20 mg simvastatin for 6-12 weeks. Following with the treatment of patients whose low-density lipoprotein cholesterol (LDL-ch) reaching goal level (< 100 mg/dL) or close to the goal (< 130 mg/dL), while triglyceride (TG) ≥200 mg/dL and < 500 mg/dL, was combined with omega-3 fatty acids (3 g/d) or a placebo for 2 months. The effects of the treatment on HsCRP, total cholesterol (TC), LDL-ch, high-density lipoprotein cholesterol (HDL-ch), TG, lipoprotein (a) [LP (a)], apolipoprotein A1 (apoA1), apolipoprotein B (apoB), plasminogen activator inhibitor-1 (PAI-1), and tissue plasminogen activator (tPA) were investigated. Forty patients finished the study with each group consisting of twenty patients. Results (1) There were significant reductions of HsCRP, TG, TC, and TC/HDL-ch, which decreased by 2.16 ±2.77 mg/L (38.5%), 94.0 ±65.4 mg/dL (31.1%), 13.3 ±22.3 mg/dL (6.3%), 0.78 ±1.60 respectively in the omega-3 fatty acids group (P< 0.01, < 0.001, < 0.05, < 0.05) compared to the baseline. HsCRP and triglyceride reduction were more significant in omega-3 fatty acids group compared to the placebo group (P=0.021 and 0.011 respectively). (2) In the omega-3 fatty acids group, the values and percentage of TG reduction had a significantly positive relation with HsCRP reduction (r=0.51 and 0.45, P=0.021 and 0.047 respectively). Conclusion In CHD and CHD risk equivalent patients with mixed dyslipidemia, dyslipidemia’s therapeutic effect using simvastatin and omega-3 fatty acids may result from not only the combination of lipid adjustment, but also enhancement of their own nonlipid influences.展开更多
The paper introduces some findings about a sensitivity analysis conducted on every geometrical and mechanical parameters which characterize the use of a railway superstructure at the high velocity. This analysis was c...The paper introduces some findings about a sensitivity analysis conducted on every geometrical and mechanical parameters which characterize the use of a railway superstructure at the high velocity. This analysis was carried out by implementing a forecast model that is derived from the simplified Gazetas and Dobry one. This model turns out to be particularly appropriate in the explication of problems connected to high velocity, since it evaluates both inertial and viscous effects activated by the moving load speed. The model implementation requires the transfer function determination that represents the action occurred by the bed surfaces on the railway and it therefore contains information concerning the geometrical and the mechanical characteristics of the embankment, of the ballast and of the sub-ballast. The transfer function H has been evaluated with the finite elements method and particularly, by resorting the ANSYS code with a harmonic structural analysis in the frequencies field. The authors, from the critic examination of the system's dynamics response in its entirety, glean a series of observations both of a general and a specific character, finally attaining a propose of a design modification of the standard railway superstructure at the high velocity of train operation adopted today especially in Italy.展开更多
Gallium nitride- (GaN) based high electron mobility transistors (HEMTs) provide a good platform for biological detection. In this work, both Au-gated AlInN/GaN HEMT and AlGaN/GaN HEMT biosensors are fabricated for...Gallium nitride- (GaN) based high electron mobility transistors (HEMTs) provide a good platform for biological detection. In this work, both Au-gated AlInN/GaN HEMT and AlGaN/GaN HEMT biosensors are fabricated for the detection of deoxyribonucleic acid (DNA) hybridization. The Au-gated AIInN/GaN HEMT biosensor exhibits higher sensitivity in comparison with the AlGaN/GaN HEMT biosensor. For the former, the drain-source current (VDS = 0.5 V) shows a clear decrease of 69μA upon the introduction of 1μmolL^-1 (μM) complimentary DNA to the probe DNA at the sensor area, while for the latter it is only 38 μA. This current reduction is a notable indication of the hybridization. The high sensitivity can be attributed to the thinner barrier of the AlInN/GaN heterostructure, which makes the two-dimensional electron gas channel more susceptible to a slight change of the surface charge.展开更多
BACKGROUND:Early reperfusion can effectively treat acute myocardial infarction(AMI) and reduce the mortality signif icantly. This study aimed to compare the role of plasma microRNA-1(miR-1) and cardiac troponin T(cTnT...BACKGROUND:Early reperfusion can effectively treat acute myocardial infarction(AMI) and reduce the mortality signif icantly. This study aimed to compare the role of plasma microRNA-1(miR-1) and cardiac troponin T(cTnT) in early diagnosis of AMI patients.METHODS:From May 2011 to May 2012,plasma samples were collected from 56 AMI patients and 28 non-AMI controls. The expression of plasma miR-1 was measured by quantitative reverse transcription-polymerase chain reaction(qRT-PCR),and the level of plasma cTnT was measured using electrochemiluminescence-based methods on an Elecsys 2010 Immunoassay Analyzer. SPSS 16.0 was used for the statistical analysis of the results. Data were expressed as mean±standard deviation unless otherwise described. The differences about clinical characteristics between the AMI patients and controls were tested using Student's t test or Fisher's exact test. The Mann-Whitney U test was conducted to compare the expression of microRNAs between the AMI patients and controls. MicroRNAs expression between different intervals of the AMI patients was compared using Wilcoxon's signed-rank test. The receiver operating characteristic(ROC) curve was established to discriminate the AMI patients from the controls.RESULTS:In the present study,the expression of plasma miR-1 was signifi cantly increased in the AMI patients compared with the healthy controls(P<0.01). The plasma miR-1 in the AMI patients decreased to the normal level at 14 days(P>0.05). The expression of plasma miR-1 was not related to the clinical characteristics of the study population(P>0.05). ROC curve analyses demonstrated that miR-1 was specifi c and sensitive for the early diagnosis of AMI,but not superior to cTnT.CONCLUSION:Plasma miR-1 could be used in the early diagnosis of AMI,but it is similar to cTnT.展开更多
文摘Background The data on the prognostic values of high sensitivity C-reactive protein (hsCRP) levels in patients with advanced symp-tomatic heart failure (HF) receiving cardiac resynchronization therapy (CRT) are scarce. The aim of present study was to investigate the association of serum hsCRP levels with left ventricle reverse remodeling after six months of CRT as well as long-term outcome. Methods A total of 232 CRT patients were included. The assessment of hsCRP values, clinical status and echocardiographic data were performed at baseline and after six months of CRT. Long-term follow-up included all-cause mortality and hospitalizations for HF. Results During the mean follow-up periods of 31.3 ± 31.5 months, elevated hsCRP (〉3 mg/L) prior to CRT was associated with a significant 2.39-fold increase (P=0.006) in the risk of death or HF hospitalizations. At 6-month follow-up, patients who responded to CRT showed significant reductions or maintained low in hsCRP levels (–0.5 ± 4.1 mg/L reduction) compared with non-responders (1.7 ± 6.1 mg/L increase, P=0.018). Com-pared with patients in whom 6-month hsCRP levels were reduced or remained low, patients in whom 6-month hsCRP levels were increased or maintained high experienced a significantly higher risk of subsequent death or HF hospitalizations (Log-rank P〈0.001). The echocardio-graphic improvement was also better among patients in whom 6-month hsCRP levels were reduced or remained low compared to those in whom 6-month hsCRP levels were raised or maintained high. Conclusions Our findings demonstrated that measurement of baseline and follow-up hsCRP levels may be useful as prognostic markers for timely potential risk stratification and subsequent appropriate treatment strategies in patients with advanced HF undergoing CRT.
基金the support of the National High Technology Research and Development Program of China (863) (Grant No. 2012AA1406)
文摘In direct sequence spread spectrum communication both for satelliteto-ground and inter-satellite links, the system constrains due to radio frequency spectral occupation, channel data throughput and link performances in terms of data channel coding which might result in a signal structure where the symbol duration is shorter than the pseudo code period. This can generate some difficulties in the DSSS signal acquisition due to the polarity inversion caused by the data modulation. To eliminate the influence due to polarity inversion, this paper proposes a novel acquisition algorithm based on the simultaneous search of the code phase, data phase and Doppler frequency. In the proposed algorithm the data phase is predicted and the correlation period for the coherent integration can be set equal to the symbol duration. Then non-coherent accumulation over different symbol is implemented in order to enhance the acquisition algorithm sensitivity; the interval of non-coherent accumulation is the least common multiple between the symbol duration and the pseudo code period. The algorithm proposed can largely minimize the SNR loss caused by data polarity inversion and enhance acquisition performance without a noticeable increase in hardware complexity. Theoretical analysis, simulation and measured results verify the validity of the algorithm.
基金funded by research organizations in Tunisia(Ministry of Public Health and Ministry of Higher Education and Scientific Research)。
文摘Background Coronary artery disease(CAD)remains a leading cause of morbidity and mortality.Cytokines play a potential role in atherosclerosis pathogenesis and progression.We investigated the association between high sensitive C-reactive protein(hs CRP)and severity of CAD.Methods CAD patients were stratified according to hs CRP cut-off value into high levels hs CRP group(≥8.4 mg/L)and low levels hs CRP group(<8.4 mg/L).Severity of CAD was assessed according to artery stenosis degree and the number of vessel involved.Statistical analysis was performed using Statistical Package for the Social Sciences(SPSS,version 23.0).Results The mean age was 60.3±11.0 years.The level of hs CRP was increased and ranged from 0.2 to 1020.0 mg/L.Biochemical risk factors and severity of CAD didn’t show significant differences between the two groups.In multivariate linear analysis,cardiac troponin I(c Tn I)and serum amyloid A(SAA)were predictors of hs CRP.As shown in receiver operating characteristic(ROC)curve analysis performed in patients with ST-segment elevation myocardial infarction(STEMI)and compared to myonecrosis biomarkers,hs CRP(area under the curve(AUC):0.905;95%CI:0.844-0.966;P<0.001)could be a powerful predictor marker in evaluating the infarct size after myocardial infarction but not better than c Tn I.Conclusions Hs CRP levels were not associated with the severity of CAD but could be useful in the evaluation of myocardial necrosis in patients with STEMI.
基金supported by the Youth Science Fund,National Natural Science Foundation of China under Grant No.61102130
文摘According to the requirements of the high-sensitivity acquisition of Direct Sequence Spread Spectrum(DSSS) signals under ultrahigh dynamic environments in space communications, a three-dimensional joint search of the phase of Pseudo-Noise-code(PN-code),Doppler frequency and its rate-of-change is presented to achieve high sensitivity in sensing high-frequency dynamics. By eliminating the correlation peak loss caused by ultrahigh Doppler frequency and its rate-of-change offset,the proposed method improves the acquisition sensitivity by increasing the non-coherent accumulation time. The validity of the algorithm is proved by theoretical analysis and simulation results. It is shown that signals with a carrier- to-noise ratio as low as 39 dBHz can be captured with high performance when the Doppler frequency is up to ±1 MHz and its rate-of-change is up to ±200 kHz/s.
基金Supported by the Ministry of Science and Higher Education grant(#MD-2314.2020.7).The authors declare no conflict of interest.
文摘1 Introduction Inflammation is one of the main mechanisms in the pathogenesis of atherosclerosis,and the interest to the evaluation of inflammatory biomarkers in coronary artery disease(CAD)has been increasing over the last decade.[1,2]Destabilization of chronic artery plaques,which leads to acute coronary syndromes,has been associated with inflammatory status.[1,3]。
基金Project supported by the National Basic Research Program of China(Grant No.2010CB327601)
文摘We propose a novel high-performance digital optical sensor based on the Mach-Zehnder interferential effect and the dual-microring resonators with the waveguide-coupled feedback. The simulation results show that the sensitivity of the sensor can be orders of magnitude higher than that of aconventional sensor, and high quality factor is not critical in it. Moreover, by optimizing the length of the feedback waveguide to be equal to the perimeter of the ring, the measurement range of the proposed sensor is twice as much as that of the conventional sensor in the weak coupling case.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11804066 and 61773133)Heilongjiang Provincial Natural Science Foundation of China(Grant No.LH2019A005)+1 种基金China Postdoctoral Science Foundation(Grant No.2018M630337)Heilongjiang Provincial Postdoctoral Science Foundation(Grant No.LBHZ18062)。
文摘We propose a core rotation-sensing element for improving the sensitivity of the micro-optical gyroscope using the large nonreciprocal effect with a photonic crystal.The sharp transmission peak of electromagnetically induced transparency in photonic crystal generated from a periodic distribution of cold atoms is sensitive to the rotation.Our numerical results show that the sensitivity of relative rotation is about 50 times higher and the sensitivity of absolute rotation is more than two orders higher than that of the traditional resonant optical gyroscope.Also,the sensitivity of the gyroscope can be manipulated by varying the atomic density,modulation frequency,probe pulse width,and photonic crystal length,etc.
基金financial supports from in part by National Natural Science Foundation of China under Grants 61922061, 61775161 and 61735011in part by the Tianjin Science Fund for Distinguished Young Scholars under Grant 19JCJQJC61400
文摘A dispersion model is developed to provide a generic tool for configuring plasmonic resonance spectral characteristics.The customized design of the resonance curve aiming at specific detection requirements can be achieved.According to the model,a probe-type nano-modified fiber optic configurable plasmonic resonance(NMF-CPR)sensor with tip hot spot enhancement is demonstrated for the measurement of the refractive index in the range of 1.3332-1.3432 corresponding to the low-concentration biomarker solution.The new-type sensing structure avoids excessive broadening and redshift of the resonance dip,which provides more possibilities for the surface modification of other functional nanomaterials.The tip hot spots in nanogaps between the Au layer and Au nanostars(AuNSs),the tip electric field enhancement of AuNSs,and the high carrier mobility of the WSe_(2)layer synergistically and significantly enhance the sensitivity of the sensor.Ex-perimental results show that the sensitivity and the figure of merit of the tip hot spot enhanced fiber NMF-CPR sensor can achieve up to 2995.70 nm/RIU and 25.04 RIU^(−1),respectively,which are 1.68 times and 1.29 times higher than those of the conventional fiber plasmonic resonance sensor.The results achieve good agreements with numerical simulations,demonstrate a better level compared to similar reported studies,and verify the correctness of the dispersion model.The detection resolution of the sensor reaches up to 2.00×10^(−5)RIU,which is obviously higher than that of the conventional side-polished fiber plasmonic resonance sensor.This indicates a high detection accuracy of the sensor.The dense Au layer effectively prevents the intermediate nanomaterials from shedding and chemical degradation,which enables the sensor with high stability.Furthermore,the terminal reflective sensing structure can be used as a practical probe and can allow a more convenient operation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52021006,52025023,51991342,and 11888101)the Key R&D Program of Guangdong Province,China(Grant Nos.2019B010931001,2020B010189001,and 2018B030327001)+6 种基金the Pearl River Talent Recruitment Program of Guangdong Province,China(Grant No.2019ZT08C321)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB33000000)Beijing Natural Science Foundation,China(Grant No.JQ19004)Beijing Municipal Science&Technology Commission,China(Grant No.Z181100004818003)the China Postdoctoral Science Foundation(Grant No.2020M680177)National Postdoctoral Program for Innovative Talents of China(Grant No.BX20190016)China Postdoctoral Science Foundation(Grant No.2019M660280).
文摘Optical fiber temperature sensors have been widely employed in enormous areas ranging from electric power industry,medical treatment,ocean dynamics to aerospace.Recently,graphene optical fiber temperature sensors attract tremendous attention for their merits of simple structure and direct power detecting ability.However,these sensors based on transfer techniques still have limitations in the relatively low sensitivity or distortion of the transmission characteristics,due to the unsuitable Fermi level of graphene and the destruction of fiber structure,respectively.Here,we propose a tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber(Gr-PCF)with the non-destructive integration of graphene into the holes of PCF.This hybrid structure promises the intact fiber structure and transmission mode,which efficiently enhances the temperature detection ability of graphene.From our simulation,we find that the temperature sensitivity can be electrically tuned over four orders of magnitude and achieve up to~3.34×10^(-3) dB/(cm·℃)when the graphene Fermi level is~35 meV higher than half the incident photon energy.Additionally,this sensitivity can be further improved by~10 times through optimizing the PCF structure(such as the fiber hole diameter)to enhance the light–matter interaction.Our results provide a new way for the design of the highly sensitive temperature sensors and broaden applications in all-fiber optoelectronic devices.
文摘Objective Cardiovascular complications contribute to postoperative morbidity and mortality in elderly hip fracture patients. Limited data are available regarding which preoperative risk factors predict cardiovascular course following hip fracture surgery (HFS). We used high sensitive troponin I (hs-TnI) assays and clinical parameters to identify preoperative risk factors associated with major adverse cardiac events (MACE) in elderly hip frac^u'e patients. Method From August 2014 to November 2016, 575 patients with hip fracture were enrolled in a retrospective, single-center registry. A total of 262 of these patients underwent HFS and hs-TnI assays. MACE was defined as postoperative all-cause deaths, heart failure (HF), new-onset atrial fibrillation (AF), myocardial infarction (MI) and cardiovascular re-hospitalization that occurred within 90 days postoperative. Results Of 262 HFS patients, MACE developed following HFS in 65 (24.8%). Patients with MACE were older and had higher rates of renal insufficiency, coronary artery disease, prior HF, low left ventricular ejection fraction and use of beta blockers; higher levels of hs-Tnl and N-terminal pro-brain natriuretic peptide (NT-proBNP) and higher revised cardiac risk index. A preoperative hs-TnI≥ 6.5 ng/L was associated with high risk of postoperative HF, new-onset AF and MACE. In multivariable analysis, pre-operative independent predictors for MACE were age 〉 80 years [adjusted hazard ratio (HR): 1.79, 95% confident interval (CI): 1.03-3.13, P = 0.04], left ventricular ejection fraction (LVEF) 〈 50% (adjusted HR: 3.17, 95% CI: 1.47-5.82, P 〈 0.01) and hs-TnI 〉 6.5 ng/L (adjusted HR: 3.75, 95% CI: 2.09~5.17, P 〈 0.01). Conclusion In elderly patients with hip fracture who undergo HFS, a preoperative assessment of hs-TnI may help the risk refinement of cardiovascular complications.
文摘Objective To evaluate the effects of simvastatin combined with omega-3 fatty acids on high sensitive C-reactive protein(HsCRP), lipidemia, and fibrinolysis in coronary heart disease (CHD) and CHD risk equivalent patients with mixed dyslipi-demia. Methods A randomized, double-blind placebo controlled and parallel group trial was conducted. Patients with CHD and CHD risk equivalents with mixed dyslipidemia were treated with 10 or 20 mg simvastatin for 6-12 weeks. Following with the treatment of patients whose low-density lipoprotein cholesterol (LDL-ch) reaching goal level (< 100 mg/dL) or close to the goal (< 130 mg/dL), while triglyceride (TG) ≥200 mg/dL and < 500 mg/dL, was combined with omega-3 fatty acids (3 g/d) or a placebo for 2 months. The effects of the treatment on HsCRP, total cholesterol (TC), LDL-ch, high-density lipoprotein cholesterol (HDL-ch), TG, lipoprotein (a) [LP (a)], apolipoprotein A1 (apoA1), apolipoprotein B (apoB), plasminogen activator inhibitor-1 (PAI-1), and tissue plasminogen activator (tPA) were investigated. Forty patients finished the study with each group consisting of twenty patients. Results (1) There were significant reductions of HsCRP, TG, TC, and TC/HDL-ch, which decreased by 2.16 ±2.77 mg/L (38.5%), 94.0 ±65.4 mg/dL (31.1%), 13.3 ±22.3 mg/dL (6.3%), 0.78 ±1.60 respectively in the omega-3 fatty acids group (P< 0.01, < 0.001, < 0.05, < 0.05) compared to the baseline. HsCRP and triglyceride reduction were more significant in omega-3 fatty acids group compared to the placebo group (P=0.021 and 0.011 respectively). (2) In the omega-3 fatty acids group, the values and percentage of TG reduction had a significantly positive relation with HsCRP reduction (r=0.51 and 0.45, P=0.021 and 0.047 respectively). Conclusion In CHD and CHD risk equivalent patients with mixed dyslipidemia, dyslipidemia’s therapeutic effect using simvastatin and omega-3 fatty acids may result from not only the combination of lipid adjustment, but also enhancement of their own nonlipid influences.
文摘The paper introduces some findings about a sensitivity analysis conducted on every geometrical and mechanical parameters which characterize the use of a railway superstructure at the high velocity. This analysis was carried out by implementing a forecast model that is derived from the simplified Gazetas and Dobry one. This model turns out to be particularly appropriate in the explication of problems connected to high velocity, since it evaluates both inertial and viscous effects activated by the moving load speed. The model implementation requires the transfer function determination that represents the action occurred by the bed surfaces on the railway and it therefore contains information concerning the geometrical and the mechanical characteristics of the embankment, of the ballast and of the sub-ballast. The transfer function H has been evaluated with the finite elements method and particularly, by resorting the ANSYS code with a harmonic structural analysis in the frequencies field. The authors, from the critic examination of the system's dynamics response in its entirety, glean a series of observations both of a general and a specific character, finally attaining a propose of a design modification of the standard railway superstructure at the high velocity of train operation adopted today especially in Italy.
基金Supported by the National Key Research and Development Program of China under Grant Nos 2016YFB0400104 and2016YFB0400301the National Natural Sciences Foundation of China under Grant No 61334002the National Science and Technology Major Project
文摘Gallium nitride- (GaN) based high electron mobility transistors (HEMTs) provide a good platform for biological detection. In this work, both Au-gated AlInN/GaN HEMT and AlGaN/GaN HEMT biosensors are fabricated for the detection of deoxyribonucleic acid (DNA) hybridization. The Au-gated AIInN/GaN HEMT biosensor exhibits higher sensitivity in comparison with the AlGaN/GaN HEMT biosensor. For the former, the drain-source current (VDS = 0.5 V) shows a clear decrease of 69μA upon the introduction of 1μmolL^-1 (μM) complimentary DNA to the probe DNA at the sensor area, while for the latter it is only 38 μA. This current reduction is a notable indication of the hybridization. The high sensitivity can be attributed to the thinner barrier of the AlInN/GaN heterostructure, which makes the two-dimensional electron gas channel more susceptible to a slight change of the surface charge.
基金supported by grants from the National Natural Science Foundation of China(81071030)the Science and Technology Foundation of Guangdong Province(2011B080701006)
文摘BACKGROUND:Early reperfusion can effectively treat acute myocardial infarction(AMI) and reduce the mortality signif icantly. This study aimed to compare the role of plasma microRNA-1(miR-1) and cardiac troponin T(cTnT) in early diagnosis of AMI patients.METHODS:From May 2011 to May 2012,plasma samples were collected from 56 AMI patients and 28 non-AMI controls. The expression of plasma miR-1 was measured by quantitative reverse transcription-polymerase chain reaction(qRT-PCR),and the level of plasma cTnT was measured using electrochemiluminescence-based methods on an Elecsys 2010 Immunoassay Analyzer. SPSS 16.0 was used for the statistical analysis of the results. Data were expressed as mean±standard deviation unless otherwise described. The differences about clinical characteristics between the AMI patients and controls were tested using Student's t test or Fisher's exact test. The Mann-Whitney U test was conducted to compare the expression of microRNAs between the AMI patients and controls. MicroRNAs expression between different intervals of the AMI patients was compared using Wilcoxon's signed-rank test. The receiver operating characteristic(ROC) curve was established to discriminate the AMI patients from the controls.RESULTS:In the present study,the expression of plasma miR-1 was signifi cantly increased in the AMI patients compared with the healthy controls(P<0.01). The plasma miR-1 in the AMI patients decreased to the normal level at 14 days(P>0.05). The expression of plasma miR-1 was not related to the clinical characteristics of the study population(P>0.05). ROC curve analyses demonstrated that miR-1 was specifi c and sensitive for the early diagnosis of AMI,but not superior to cTnT.CONCLUSION:Plasma miR-1 could be used in the early diagnosis of AMI,but it is similar to cTnT.