期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
基于Ghost卷积与自适应注意力的点云分类
1
作者 舒密 王占刚 《现代电子技术》 北大核心 2025年第6期106-112,共7页
点云Transformer网络在提取三维点云的局部特征和携带的多级自注意力机制方面展现出了卓越的特征学习能力。然而,多级自注意力层对计算和内存资源的要求极高,且未充分考虑特征融合中层级间以及通道间的区分度与关联性。为解决上述问题,... 点云Transformer网络在提取三维点云的局部特征和携带的多级自注意力机制方面展现出了卓越的特征学习能力。然而,多级自注意力层对计算和内存资源的要求极高,且未充分考虑特征融合中层级间以及通道间的区分度与关联性。为解决上述问题,提出一种基于点云Transformer的轻量级特征增强融合分类网络EFF-LPCT。EFF-LPCT使用一维化Ghost卷积对原始网络进行重构,以降低计算复杂度和内存要求;引入自适应支路权重,以实现注意力层级间的多尺度特征融合;利用多个通道注意力模块增强特征的通道交互信息,以提高模型分类效果。在ModelNet40数据集进行的实验结果表明,EFF-LPCT在达到93.3%高精度的同时,相较于点云Transformer减少了1.11 GFLOPs的浮点计算量和0.86×10^(6)的参数量。 展开更多
关键词 点云分类 Transformer网络 Ghost卷积 特征增强融合模块 eca通道注意力 特征学习
在线阅读 下载PDF
基于高效通道注意力模块(ECA)和YOLOv5的图像检测方法研究 被引量:4
2
作者 方汀 刘艺超 +3 位作者 唐哲 田博宇 赵小军 郑运昌 《科学技术创新》 2023年第8期88-91,共4页
佩戴安全帽是人们在施工建设中的一项重要保护措施,它可以有效保障人们的生命财产安全。安全帽检测系统也已经成为了很多施工场所的必备的基础设施,为了改善YOLOv5不能通过权重进行聚焦,从而生成有明显辨识度的特征,进而影响安全帽检测... 佩戴安全帽是人们在施工建设中的一项重要保护措施,它可以有效保障人们的生命财产安全。安全帽检测系统也已经成为了很多施工场所的必备的基础设施,为了改善YOLOv5不能通过权重进行聚焦,从而生成有明显辨识度的特征,进而影响安全帽检测准确度的问题,我们在YOLOv5中引入了注意力模块,保证了卷积过程中的特征提取,并且使得图像得到优化,提升了安全帽检测结果的准确性和模型性能。并且我们对比了原YOLOv5、添加了ECA(Efficient Channel Attention)高效通道注意力模块、添加了SEA(Squeeze-andExcitation attention)注意力模块和添加了压缩激励SEL(Squeeze and Excitation Layer)注意力模块的精确率P/%、召回率R/%、mAP@0.5和mAP@0.5:0.95,实验结果表明添加了ECA(Efficient Channel Attention)通道注意力模块的ECA-Yolov5算法相较于原YOLOv5算法P/%、R/%、mAP@0.5、mAP@0.5:0.95分别提升了0.5、0.6、0.5、0.2。由此结果表明引入高效通道注意力模块(ECA)的YOLOv5安全帽识别算法更有能力进行安全施工的检测,提升了施工的安全性。 展开更多
关键词 YOLOv5 安全帽检测 深度学习 高效通道注意力模块(eca)
在线阅读 下载PDF
引入ECA注意力机制的U-Net语义分割 被引量:9
3
作者 王瑞绅 宋公飞 王明 《电光与控制》 CSCD 北大核心 2023年第1期92-96,102,共6页
多种应用依赖于数据理解的准确性,而语义图像分割有效地解决了这个问题,它为基于像素级别的场景理解提供了必要的上下文信息。鉴于ResNeXt50相比于一般的卷积操作具有更强的特征提取能力,提出了一种基于ResNeXt50的U-Net网络结构ECAU-Ne... 多种应用依赖于数据理解的准确性,而语义图像分割有效地解决了这个问题,它为基于像素级别的场景理解提供了必要的上下文信息。鉴于ResNeXt50相比于一般的卷积操作具有更强的特征提取能力,提出了一种基于ResNeXt50的U-Net网络结构ECAU-Net。在融合过程中,通过引入超强通道注意力(ECA)模块进一步增强特征表示对场景分割的判别能力。除此之外,在整体网络结构中引入空洞卷积,在不改变卷积核大小的情况下扩大图像的感受野范围,从而最大化地提高网络性能。实验结果表明,在CamVid数据集上,ECAU-Net相较于U-Net在Acc, Acc class, MIoU和FWIoU这4个评价指标上分别提高了2.1%,8.6%,8.2%和3.2%。 展开更多
关键词 语义图像分割 空洞卷积 超强通道注意力模块 U-Net
在线阅读 下载PDF
基于ECA改进1D-CNN的柱塞泵故障诊断 被引量:2
4
作者 杨光乔 李颖 +3 位作者 王国程 刘明魁 柳小勤 邓云楠 《石油机械》 北大核心 2023年第11期34-40,162,共8页
往复式柱塞泵是油田作业的关键设备,其健康状况直接影响作业区的生产运行效率。针对变工况柱塞泵的复杂振动特性,提出基于高效通道注意力(Efficient Channel Attention,ECA)的一维卷积神经网络(One-dimensional Convolutional Neural Ne... 往复式柱塞泵是油田作业的关键设备,其健康状况直接影响作业区的生产运行效率。针对变工况柱塞泵的复杂振动特性,提出基于高效通道注意力(Efficient Channel Attention,ECA)的一维卷积神经网络(One-dimensional Convolutional Neural Network,1D-CNN)油田柱塞泵故障诊断方法。在油田柱塞泵体关键部位安装加速度传感器,并使用测振系统采集泵前轴承等关键部位振动信号;利用一维卷积神经网络对油田柱塞泵振动监测信号进行学习,以识别柱塞泵故障特征,通过高效通道注意力(ECA)机制实现减少特征维度损失同时捕获特征通道信息交互,以提高柱塞泵故障诊断精度;借助SoftMax分类器实现振动加速度信号分析的多故障诊断。现场数据采集及试验分析证明,提出的故障诊断模型具有较强的数据特征提取能力,并在油田实际运行数据分析中取得了高性能的诊断效果。验证结果表明,该技术在柱塞泵监测应用中具有较强的鲁棒性和准确性,与其他单一深度学习相比有显著的故障特征提取和诊断优势,能够为柱塞泵及类似设备的故障诊断提供理论依据和技术指导。 展开更多
关键词 柱塞泵 故障诊断 卷积神经网络 高效通道注意力
在线阅读 下载PDF
一种改进的YOLOv5s航拍车辆检测算法 被引量:1
5
作者 张立国 沈明浩 +2 位作者 金梅 任婷婷 赵嘉士 《计量学报》 CSCD 北大核心 2024年第7期974-981,共8页
为了解决航拍图像中车辆小目标检测困难的问题,提出一种改进的YOLOv5s航拍车辆检测算法。首先,将未利用的浅层特征信息与其他深层特征信息进一步融合,组成用于小目标检测的新检测层,提高小目标的检测能力;其次,结合SPD模块重新设计CSP... 为了解决航拍图像中车辆小目标检测困难的问题,提出一种改进的YOLOv5s航拍车辆检测算法。首先,将未利用的浅层特征信息与其他深层特征信息进一步融合,组成用于小目标检测的新检测层,提高小目标的检测能力;其次,结合SPD模块重新设计CSP模块构成SPD-CSP模块,代替原有网络的下采样操作,减少特征提取时小目标有效信息的损失;最后,将通道注意力机制ECA模块引入到Backbone部分中,通过自适应地调整不同特征通道的权重系数,使得网络更加关注特征图中的关键信息,减少无关信息的干扰。实验结果表明:提出的算法在VisDrone数据集上,与YOLOv5s网络相比,均值平均精度P_(mAP 0.5)提高了6.4%,检测速度FPS达到65帧/s,能实时、精确地对航拍车辆进行检测。 展开更多
关键词 机器视觉 YOLOv5s SPD-CSP模块 航拍图像 深度学习 高效通道注意力机制
在线阅读 下载PDF
改进VGG网络的人脸表情识别 被引量:4
6
作者 郭昕刚 沈紫琪 王晓林 《长春工业大学学报》 CAS 2023年第1期52-57,共6页
在VGG网络上加入改进型高阶残差模块和参数共享反馈子网络降低网络退化度和减少网络参数量,并利用通道注意力机制给通道分配不同权重,来提高表情识别度。将此网络运用到两个具有代表性的数据集FER2013、CK+中。实验结果表明,识别率分别... 在VGG网络上加入改进型高阶残差模块和参数共享反馈子网络降低网络退化度和减少网络参数量,并利用通道注意力机制给通道分配不同权重,来提高表情识别度。将此网络运用到两个具有代表性的数据集FER2013、CK+中。实验结果表明,识别率分别为65.34%和96.88%。 展开更多
关键词 高阶残差模块 参数共享反馈子网络 通道注意力机制
在线阅读 下载PDF
矿井图像超分辨率重建研究 被引量:1
7
作者 王媛彬 刘佳 +1 位作者 郭亚茹 吴冰超 《工矿自动化》 CSCD 北大核心 2023年第11期76-83,120,共9页
受井下粉尘大、照度低等环境影响,矿井图像存在分辨率低、细节模糊等问题,现有的图像超分辨率重建算法应用于矿井图像时,难以获取不同尺度图像信息、网络参数过大而影响重建速度,且重建图像易出现细节丢失、边缘轮廓模糊、伪影等问题。... 受井下粉尘大、照度低等环境影响,矿井图像存在分辨率低、细节模糊等问题,现有的图像超分辨率重建算法应用于矿井图像时,难以获取不同尺度图像信息、网络参数过大而影响重建速度,且重建图像易出现细节丢失、边缘轮廓模糊、伪影等问题。提出了一种基于多尺度密集通道注意力超分辨率生成对抗网络(SRGAN)的矿井图像超分辨率重建算法。设计了多尺度密集通道注意力残差块替代SRGAN原有的残差块,采用2路并行且卷积核大小不同的密集连接块,可充分获取图像特征;融入高效通道注意力模块,加强对高频信息的关注度;采用深度可分离卷积对网络进行轻量化,抑制网络参数的增加;利用纹理损失约束网络训练,避免网络加深时产生伪影。在井下数据集和公共数据集上对提出的矿井图像超分辨率重建算法和经典超分辨率重建算法BICUBIC,SRCNN,SRRESNET,SRGAN进行实验,结果表明:所提算法在主客观评价上总体优于对比算法,网络参数较SRGAN减少了2.54%,峰值信噪比与结构相似度较经典算法指标均值分别提高了0.764 dB和0.05358,能更好地关注图像的纹理、轮廓等细节信息,重建图像更符合人眼视觉。 展开更多
关键词 矿井图像 超分辨率重建 超分辨率生成对抗网络 多尺度密集通道注意力残差块 高效通道注意力模块 深度可分离卷积 纹理损失
在线阅读 下载PDF
基于改进CNN的噪声以及变负载条件下滚动轴承故障诊断方法 被引量:16
8
作者 谢天雨 董绍江 《噪声与振动控制》 CSCD 北大核心 2021年第2期111-117,共7页
针对现有轴承故障诊断方法应对噪声以及变负载条件下诊断能力不足问题,提出一种基于卷积神经网络(Convolutional Neural Networks, CNN)和有效通道注意力模块(Efficient Channel Attention,ECA)的滚动轴承故障诊断方法。该方法首先通过... 针对现有轴承故障诊断方法应对噪声以及变负载条件下诊断能力不足问题,提出一种基于卷积神经网络(Convolutional Neural Networks, CNN)和有效通道注意力模块(Efficient Channel Attention,ECA)的滚动轴承故障诊断方法。该方法首先通过卷积神经网络对原始信号进行自适应故障特征提取;然后使用ECA模块生成通道注意力权重,实现对通道全局特征信息的掌握,据此增强模型在噪声及变负载条件下特征提取能力;最后将所提取的特征信息输入Softmax分类器并输出结果,实现滚动轴承故障诊断。通过对比实验证明,相比于传统深度学习方法,该方法拥有优良的轴承故障诊断性能,并在噪声干扰以及变负载条件下仍能保持出色的故障诊断准确率。 展开更多
关键词 故障诊断 卷积神经网络 有效通道注意力模块 滚动轴承
在线阅读 下载PDF
基于知识蒸馏与EssNet的田间农作物病害识别 被引量:8
9
作者 温钊发 蒲智 +1 位作者 程曦 赵昀杰 《山东农业科学》 北大核心 2023年第5期154-163,共10页
农作物病害的快捷精准识别对我国粮食安全与农业发展提质增效具有重要意义。针对现有病害识别模型参数量大、泛化能力弱、不适用于田间实际场景且不易搭载至移动端等问题,本文提出了EssNet农作物病害识别网络,该网络以ShuffleNetV2_0.5... 农作物病害的快捷精准识别对我国粮食安全与农业发展提质增效具有重要意义。针对现有病害识别模型参数量大、泛化能力弱、不适用于田间实际场景且不易搭载至移动端等问题,本文提出了EssNet农作物病害识别网络,该网络以ShuffleNetV2_0.5为基础网络,引入高效通道注意力(ECA)机制与SiLU激活函数进行结构改进,同时结合知识蒸馏技术使用EfficientNetB0网络对EssNet进行学习指导,最后使用余弦退火衰减策略对学习率进行动态调整使网络表现达到最优。结果表明,本文提出的EssNet农作物病害识别网络对复杂环境下2种作物(玉米、苹果)的11种病害在测试集上的准确率达到95.21%,比基础网络提高2.11个百分点,参数量为0.35 M,权重文件为1.49 MB。该网络的整体性能优于其他现有模型,为建立田间轻量级农作物病害识别方法提供了参考。 展开更多
关键词 田间农作物 病害识别 轻量级 知识蒸馏 EssNet eca注意力机制 余弦退火
在线阅读 下载PDF
基于多重多尺度融合注意力网络的建筑物提取 被引量:7
10
作者 杨栋杰 高贤君 +3 位作者 冉树浩 张广斌 王萍 杨元维 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第10期1924-1934,共11页
针对全卷积神经网络模型在进行建筑物提取时易产生过度分割以及内部空洞的问题,提出基于多重多尺度融合注意力网络(MMFA-Net)的高分辨率遥感影像建筑物提取方法.该方法以U-Net为主体架构,设计2个模块:多重高效通道注意力(MECA)和多尺度... 针对全卷积神经网络模型在进行建筑物提取时易产生过度分割以及内部空洞的问题,提出基于多重多尺度融合注意力网络(MMFA-Net)的高分辨率遥感影像建筑物提取方法.该方法以U-Net为主体架构,设计2个模块:多重高效通道注意力(MECA)和多尺度特征融合注意力(MFA). MECA设计在模型跳跃连接中,通过权重配比强化有效特征信息,避免注意力向无效特征的过渡分配;采用多重特征提取,减少有效特征的损失. MFA被嵌入模型底部,结合并行连续中小尺度空洞卷积与通道注意力,获得不同的空间特征与光谱维度特征,缓解空洞卷积造成的大型建筑物像素缺失问题. MMFA-Net通过融合MECA和MFA,提高了建筑物提取结果的完整度和精确率.将模型在WHU、 Massachusetts和自绘建筑物数据集上进行验证,在定量评价方面优于其他5种对比方法,F_(1)分数和IoU分别达到93.33%、87.50%;85.38%、74.49%和88.46%、79.31%. 展开更多
关键词 深度学习 高分辨遥感影像 建筑物提取 多尺度特征融合 高效通道注意力模块 U-Net
在线阅读 下载PDF
基于改进ShuffleNetV2网络的岩石图像识别 被引量:4
11
作者 袁硕 刘玉敏 +2 位作者 安志伟 王硕昌 魏海军 《吉林大学学报(信息科学版)》 CAS 2023年第3期450-458,共9页
由于基于传统深度学习的岩石图像识别算法模型比较繁琐,而且应用于移动终端等需要一定的计算能力,因此很难实现对岩石类型的实时准确判别。为此,以ShuffleNetV2网络为基础,插入通道连接注意力机制ECA(Efficient Channel Attention)模块... 由于基于传统深度学习的岩石图像识别算法模型比较繁琐,而且应用于移动终端等需要一定的计算能力,因此很难实现对岩石类型的实时准确判别。为此,以ShuffleNetV2网络为基础,插入通道连接注意力机制ECA(Efficient Channel Attention)模块,使用Mish激活函数代替ReLU激活函数并引入轻量级网络部件中的深度可分离卷积。将该方法用于岩石图像识别,实验结果表明,改进后的算法结构简单,同时具有轻量化的特点,其识别精度达到94.74%,可在移动终端等有限资源环境下应用。 展开更多
关键词 岩石图像 有效通道注意力机制 Mish激活函数 ShuffleNet网络
在线阅读 下载PDF
基于改进残差网络的异常网络流量检测 被引量:1
12
作者 李岚俊 王英明 +1 位作者 胡昊 李洁 《长春工业大学学报》 2023年第5期468-473,共6页
提出一种改进ResNet101的异常流量数据检测和识别方法,在残差模块中改变卷积层,同时引入高效信道注意力(ECA)机制,使用一维卷积在高度注意力信道中融合特征流,增加对异常流量的识别能力。实验结果表明,基于残差网络改进模型在识别极低... 提出一种改进ResNet101的异常流量数据检测和识别方法,在残差模块中改变卷积层,同时引入高效信道注意力(ECA)机制,使用一维卷积在高度注意力信道中融合特征流,增加对异常流量的识别能力。实验结果表明,基于残差网络改进模型在识别极低样本数量时相比原有模型能够有更高的精确率、召回率和F 1值。 展开更多
关键词 流量数据检测 ResNet101 eca 不平衡
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部