锂电池健康状态(state of health,SOH)的在线估计是锂电池管理系统中必不可少的一部分。大部分基于数据驱动的锂电池SOH估计方法由于计算量较大,难以在锂电池管理系统微控制器中在线使用。因此,文中提出基于新型健康特征的锂电池SOH快...锂电池健康状态(state of health,SOH)的在线估计是锂电池管理系统中必不可少的一部分。大部分基于数据驱动的锂电池SOH估计方法由于计算量较大,难以在锂电池管理系统微控制器中在线使用。因此,文中提出基于新型健康特征的锂电池SOH快速估计方法。首先,分析锂电池的充电数据,基于已有的锂电池恒流充电过程的等压升时间(time interval of an equal charging voltage difference,TIECVD)健康特征,构建一个同充电电压起点、同充电时间间隔的健康特征。其次,文中提出基于新型健康特征和多元线性回归(multiple linear regression,MLR)的锂电池SOH快速估计方法。然后,通过对牛津锂电池老化数据集和美国国家航空航天局锂电池随机使用数据集进行分析,以0.01 V步长遍历恒流充电电压区间,以皮尔逊相关系数最大为目标,确定锂电池最优的起始电压。最后,考虑不同充电时间间隔,利用最小二乘(ordinary least squares,OLS)回归分析方法,确定锂电池最优充电时间间隔参数。使用2个数据集划分的训练集建立MLR模型,使用2个数据集划分的验证集对文中方法进行验证。实验结果表明,文中基于新型健康特征方法可极大缩减计算量,并且可以在保障预测精度的前提下实现锂电池SOH的快速估计。展开更多
为克服现有方法在交织流量表征和影响因素量化方面的不足,本文融合微观仿真与机器学习方法,构建从仿真标定和影响因素作用机制分析到通行能力估计的研究框架。提出结合DBSCAN(DensityBased Spatial Clustering of Applications with Noi...为克服现有方法在交织流量表征和影响因素量化方面的不足,本文融合微观仿真与机器学习方法,构建从仿真标定和影响因素作用机制分析到通行能力估计的研究框架。提出结合DBSCAN(DensityBased Spatial Clustering of Applications with Noise)聚类、信息熵与遗传算法的DIEGA(DBSCAN Information Entropy Genetic Algorithm)仿真标定改进方法;通过仿真实验分析交织区长度(L_(W))、驶入流量(Q_(RF))、驶出流量(Q_(FR))与通行能力的关联关系;同时,构建基于堆叠策略的通行能力估计模型,并结合SHAP(SHapley Additive Explanation)方法剖析各影响因素的作用机制。结果表明:DIEGA标定方法可将交织区各流向延误误差控制在3%以内,较传统遗传算法的收敛速度提升22.2%;在总交织流量相同的情况下,Q_(RF)与Q_(FR)的不同占比会导致通行能力在约15%范围内波动,且Q_(RF)、Q_(FR)与L_(W)之间存在非线性耦合关系;基于堆叠策略的随机森林机器学习(ML_(RF))模型(R^(2)=0.969)表现最佳,优于其他基线模型;SHAP分析显示,当Q_(RF)/Q_(FR)占比接近1,且L_(W)的范围为250~350 m时,可实现4635~4860 pcu·h^(-1)的峰值通行能力。展开更多
文摘锂电池健康状态(state of health,SOH)的在线估计是锂电池管理系统中必不可少的一部分。大部分基于数据驱动的锂电池SOH估计方法由于计算量较大,难以在锂电池管理系统微控制器中在线使用。因此,文中提出基于新型健康特征的锂电池SOH快速估计方法。首先,分析锂电池的充电数据,基于已有的锂电池恒流充电过程的等压升时间(time interval of an equal charging voltage difference,TIECVD)健康特征,构建一个同充电电压起点、同充电时间间隔的健康特征。其次,文中提出基于新型健康特征和多元线性回归(multiple linear regression,MLR)的锂电池SOH快速估计方法。然后,通过对牛津锂电池老化数据集和美国国家航空航天局锂电池随机使用数据集进行分析,以0.01 V步长遍历恒流充电电压区间,以皮尔逊相关系数最大为目标,确定锂电池最优的起始电压。最后,考虑不同充电时间间隔,利用最小二乘(ordinary least squares,OLS)回归分析方法,确定锂电池最优充电时间间隔参数。使用2个数据集划分的训练集建立MLR模型,使用2个数据集划分的验证集对文中方法进行验证。实验结果表明,文中基于新型健康特征方法可极大缩减计算量,并且可以在保障预测精度的前提下实现锂电池SOH的快速估计。
文摘为克服现有方法在交织流量表征和影响因素量化方面的不足,本文融合微观仿真与机器学习方法,构建从仿真标定和影响因素作用机制分析到通行能力估计的研究框架。提出结合DBSCAN(DensityBased Spatial Clustering of Applications with Noise)聚类、信息熵与遗传算法的DIEGA(DBSCAN Information Entropy Genetic Algorithm)仿真标定改进方法;通过仿真实验分析交织区长度(L_(W))、驶入流量(Q_(RF))、驶出流量(Q_(FR))与通行能力的关联关系;同时,构建基于堆叠策略的通行能力估计模型,并结合SHAP(SHapley Additive Explanation)方法剖析各影响因素的作用机制。结果表明:DIEGA标定方法可将交织区各流向延误误差控制在3%以内,较传统遗传算法的收敛速度提升22.2%;在总交织流量相同的情况下,Q_(RF)与Q_(FR)的不同占比会导致通行能力在约15%范围内波动,且Q_(RF)、Q_(FR)与L_(W)之间存在非线性耦合关系;基于堆叠策略的随机森林机器学习(ML_(RF))模型(R^(2)=0.969)表现最佳,优于其他基线模型;SHAP分析显示,当Q_(RF)/Q_(FR)占比接近1,且L_(W)的范围为250~350 m时,可实现4635~4860 pcu·h^(-1)的峰值通行能力。