期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于改进Harris Hawk优化算法的虚拟电厂优化调度研究
1
作者 丁君 秦浩庭 +3 位作者 苏鹏 曾雪松 李竞轩 郝巍 《可再生能源》 北大核心 2025年第6期829-838,共10页
文章针对虚拟电厂的优化调度问题,提出了一种基于改进Harris Hawk优化算法的调度策略。该策略旨在提高包含光伏、风力发电、燃料电池以及热电联产单元的虚拟电厂的经济性和环境友好性,并引入电动汽车和储能系统分别作为灵活储备和旋转备... 文章针对虚拟电厂的优化调度问题,提出了一种基于改进Harris Hawk优化算法的调度策略。该策略旨在提高包含光伏、风力发电、燃料电池以及热电联产单元的虚拟电厂的经济性和环境友好性,并引入电动汽车和储能系统分别作为灵活储备和旋转备用,建立虚拟电厂灵活性聚合模型,通过改进的Harris Hawk优化算法调度方案。最后进行全面的日前调度和短期调度分析。结果表明,该策略能有效应对可再生能源的不确定性,实现对联络线功率的响应跟随。研究结果为虚拟电厂的协调优化调度提供了新的思路和方法。 展开更多
关键词 虚拟电厂 改进Harris hawk优化算法 灵活性聚合 日前和短期调度
在线阅读 下载PDF
基于Harris Hawks优化算法的介质波导滤波器优化设计 被引量:2
2
作者 舒佩文 麦健业 褚庆昕 《电波科学学报》 CSCD 北大核心 2021年第5期787-796,共10页
Harris Hawks优化(Harris Hawks optimization, HHO)算法是一种模拟鸟群合作捕食行为的新型群智能算法.介质波导滤波器是当前5G移动通信设备急需的器件,因此如何利用新型优化算法高效且精确地对介质波导滤波器进行优化设计十分重要.文... Harris Hawks优化(Harris Hawks optimization, HHO)算法是一种模拟鸟群合作捕食行为的新型群智能算法.介质波导滤波器是当前5G移动通信设备急需的器件,因此如何利用新型优化算法高效且精确地对介质波导滤波器进行优化设计十分重要.文中首先描述了HHO算法流程,并结合滤波器优化问题提出了一种通用框架;然后基于稳态假设对HHO算法的更新方程进行了理论分析,依据所导出的方程分析了算法的动态特性及收敛行为;最后利用HHO算法实现了两款介质波导滤波器的优化设计.为验证算法性能,将本文算法与三个著名的群智能算法进行比较.实验结果表明,HHO算法的收敛速度、效率和精度都明显优于目前业内主流应用的自适应差分进化算法、花粉授粉优化算法和灰狼优化算法. 展开更多
关键词 群智能优化算法 5G移动通信 Harris hawks优化(hho)算法 滤波器优化设计 介质波导滤波器
在线阅读 下载PDF
递进式融合多策略的改进哈里斯鹰优化算法 被引量:4
3
作者 丁鑫 郭云川 +3 位作者 张长胜 钱斌 张家洪 胡蓉 《小型微型计算机系统》 CSCD 北大核心 2024年第9期2126-2136,共11页
针对哈里斯鹰优化算法(HHO)易陷入局部最优、全局探索性能与局部开发能力不平衡等缺点,提出递进式融合多策略的改进哈里斯鹰优化算法(IHHO).首先,调整随机游走机制的位置更新方程以实现小范围优质勘探,提升该机制有效性,加强算法局部开... 针对哈里斯鹰优化算法(HHO)易陷入局部最优、全局探索性能与局部开发能力不平衡等缺点,提出递进式融合多策略的改进哈里斯鹰优化算法(IHHO).首先,调整随机游走机制的位置更新方程以实现小范围优质勘探,提升该机制有效性,加强算法局部开发能力;其次,采用S型自适应能量控制因子,使算法能根据搜索进程合理调控捕猎行为,修正寻优模型;最后,融入定点重组与诱变策略,既保证种群优良基因集中于某一个体,又丰富种群多样性,算法局部寻优性能和局部极值规避能力并进增强.实验表明,所提改进方法以递进式提升算法性能,经耦合叠加效应后所得IHHO的搜索精度高、收敛速度快,并且具有较强实用性. 展开更多
关键词 哈里斯鹰优化算法(hho) 融合多策略 位置更新方程 能量控制因子 定点重组与诱变策略
在线阅读 下载PDF
双向经验引导与极端个体调控的HHO算法 被引量:2
4
作者 柴岩 任生 《计算机科学与探索》 CSCD 北大核心 2023年第9期2118-2136,共19页
为进一步提升哈里斯鹰优化算法(HHO)的寻优精度和迭代速度,提出一种双向经验引导与极端个体调控的HHO算法(BEHHO)。首先采用Circle混沌映射均匀化初始种群,有效规避个体聚集情形并提升哈里斯鹰群体对解空间区域的覆盖性,奠定算法寻优基... 为进一步提升哈里斯鹰优化算法(HHO)的寻优精度和迭代速度,提出一种双向经验引导与极端个体调控的HHO算法(BEHHO)。首先采用Circle混沌映射均匀化初始种群,有效规避个体聚集情形并提升哈里斯鹰群体对解空间区域的覆盖性,奠定算法寻优基础;其次引入双向经验引导策略来强化算法的围捕机制,依托全局最优个体和历史最优个体的进化经验引导个体寻优方向,且配合自适应随机个体的差分扰动项来强化种群探索邻域能力,提升算法的收敛精度;再者考虑算法中极端个体对全局更新过程的重要影响,利用t-分布变异最优个体来避免算法陷入局部极值区,并以动态反向学习产生最差个体的反向解来间接提高算法的收敛速度,同时采用贪婪原则保留优势个体的方式确保算法子代精度趋于更优;最后基于马尔科夫链分析算法的全局收敛性。通过对基准测试函数的寻优对比分析、Wilcoxon秩和检验以及CEC2014复杂函数的对比分析,验证了改进算法优异的求解性能和健壮的鲁棒性,并以工程优化中焊接梁设计问题验证了BEHHO算法处理实际问题时的优越性。 展开更多
关键词 哈里斯鹰优化算法(hho) Circle混沌映射 双向经验引导 极端个体调控 全局收敛性 工程优化
在线阅读 下载PDF
若干新型智能优化算法对比分析研究 被引量:51
5
作者 张九龙 王晓峰 +1 位作者 芦磊 牛鹏飞 《计算机科学与探索》 CSCD 北大核心 2022年第1期88-105,共18页
智能优化算法(IOA)指的是一类以自然界的生物生存进化过程或物理现象为算法原理,用于解决最优化问题的算法,较为知名的智能优化算法有遗传算法、粒子群算法、模拟退火算法等。智能优化算法属于启发式方法,广泛应用在解决最优化问题上,... 智能优化算法(IOA)指的是一类以自然界的生物生存进化过程或物理现象为算法原理,用于解决最优化问题的算法,较为知名的智能优化算法有遗传算法、粒子群算法、模拟退火算法等。智能优化算法属于启发式方法,广泛应用在解决最优化问题上,传统的群智能算法为解决一些实际问题提供了新思路。随着科学技术的进步和应用场景的改变,传统的智能优化算法在收敛速度、求解精度等方面已无法满足日益复杂的优化问题,因此不断有新的更高效的智能优化算法被提出。选取了近几年国内外提出的几种新型智能优化算法:蝴蝶优化算法(BOA)、飞蛾扑火算法(MFO)、正弦余弦优化算法(SCA)、蝗虫优化算法(GOA)、哈里斯鹰优化算法(HHO)、麻雀搜索算法(SSA)。阐述了各算法的基本原理、算法步骤、相关的改进策略及存在的优缺点。为客观对比各算法性能,进一步通过3种类型共21个测试函数及6个指标评价各算法性能,最后归纳总结各算法的特点并对智能优化算法的发展前景进行展望。 展开更多
关键词 智能优化算法(IOA) 蝴蝶优化算法(BOA) 飞蛾扑火算法(MFO) 正弦余弦优化算法(SCA) 蝗虫优化算法(GOA) 哈里斯鹰优化算法(hho) 麻雀搜索算法(SSA)
在线阅读 下载PDF
双策略耦合优化的含瓦斯煤破裂过程信号辨识 被引量:1
6
作者 付华 赵俊程 +2 位作者 刘昊 刘雨竹 卢万杰 《中国安全科学学报》 CAS CSCD 北大核心 2022年第10期40-47,共8页
为解决含瓦斯煤破裂过程信号特征的辨识问题,以双向长短时记忆网络(BiLSTM)为基分类器,提出一种基于AdaBoost算法与哈里斯鹰优化(HHO)算法双策略耦合优化的辨识模型。首先针对AdaBoost算法中错误样本占比随迭代不断增加影响最终强分类... 为解决含瓦斯煤破裂过程信号特征的辨识问题,以双向长短时记忆网络(BiLSTM)为基分类器,提出一种基于AdaBoost算法与哈里斯鹰优化(HHO)算法双策略耦合优化的辨识模型。首先针对AdaBoost算法中错误样本占比随迭代不断增加影响最终强分类器辨识效果的问题,引入权重参数,以改变弱分类器权重,提高辨识精度;然后为确定最优的模型参数,结合HHO,优化辨识参数与权重参数,优化过程中HHO与改进的AdaBoost算法产生耦合作用,使得辨识模型的准确性和稳定性达到最优,平均准确率为91.36%,标准差缩小至0.0174。研究结果表明:双策略耦合优化HHO-AdaBoost-BiLSTM含瓦斯煤体破裂过程信号特征辨识模型准确性更高,稳定性更强。 展开更多
关键词 含瓦斯煤破裂 信号特征辨识 双策略 耦合优化 ADABOOST算法 哈里斯鹰优化(hho)算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部