The generation of optical vortices from nonlinear photonic crystals(NPCs)with spatially modulated second-order nonlinearity offers a promising approach to extend the working wavelength and topological charge of vortex...The generation of optical vortices from nonlinear photonic crystals(NPCs)with spatially modulated second-order nonlinearity offers a promising approach to extend the working wavelength and topological charge of vortex beams for various applications.In this work,the second harmonic(SH)optical vortex beams generated from nonlinear fork gratings under Gaussian beam illumination are numerically investigated.The far-field intensity and phase distributions,as well as the orbital angular momentum(OAM)spectra of the SH beams,are analyzed for different structural topological charges and diffraction orders.Results reveal that higher-order diffraction and larger structural topological charges lead to angular interference patterns and non-uniform intensity distributions,deviating from the standard vortex profile.To optimize the SH vortex quality,the effects of the fundamental wave beam waist,crystal thickness,and grating duty cycle are explored.It is shown that increasing the beam waist can effectively suppress diffraction order interference and improve the beam’s quality.This study provides theoretical guidance for enhancing the performance of nonlinear optical devices based on NPCs.展开更多
在只有图像和目标文本提示作为输入的情况下,对真实图像进行基于文本引导的编辑是一项极具挑战性的任务。以往基于微调大型预训练扩散模型的方法,往往对源文本特征和目标文本特征进行简单的插值组合,用于引导图像生成过程,这限制了其编...在只有图像和目标文本提示作为输入的情况下,对真实图像进行基于文本引导的编辑是一项极具挑战性的任务。以往基于微调大型预训练扩散模型的方法,往往对源文本特征和目标文本特征进行简单的插值组合,用于引导图像生成过程,这限制了其编辑能力,同时微调大型扩散模型极易出现过拟合且耗时长的问题。提出了一种基于映射融合嵌入扩散模型的文本引导图像编辑方法(Text-guided image editing method based on diffusion model with mapping-fusion embedding,MFE-Diffusion)。该方法由两部分组成:(1)大型预训练扩散模型与源文本特征向量联合学习框架,使模型可以快速学习以重建给定的原图像;(2)特征映射融合模块,深度融合目标文本与原图像的特征信息,生成条件嵌入,用于引导图像编辑过程。在具有挑战性的文本引导图像编辑基准TEdBench上进行实验验证,结果表明所提方法在图像编辑性能上具有优势。展开更多
基金supported by the National Nat-ural Science Foundation of China(Nos.12192251,12174185,92163216,and 62288101).
文摘The generation of optical vortices from nonlinear photonic crystals(NPCs)with spatially modulated second-order nonlinearity offers a promising approach to extend the working wavelength and topological charge of vortex beams for various applications.In this work,the second harmonic(SH)optical vortex beams generated from nonlinear fork gratings under Gaussian beam illumination are numerically investigated.The far-field intensity and phase distributions,as well as the orbital angular momentum(OAM)spectra of the SH beams,are analyzed for different structural topological charges and diffraction orders.Results reveal that higher-order diffraction and larger structural topological charges lead to angular interference patterns and non-uniform intensity distributions,deviating from the standard vortex profile.To optimize the SH vortex quality,the effects of the fundamental wave beam waist,crystal thickness,and grating duty cycle are explored.It is shown that increasing the beam waist can effectively suppress diffraction order interference and improve the beam’s quality.This study provides theoretical guidance for enhancing the performance of nonlinear optical devices based on NPCs.
文摘在只有图像和目标文本提示作为输入的情况下,对真实图像进行基于文本引导的编辑是一项极具挑战性的任务。以往基于微调大型预训练扩散模型的方法,往往对源文本特征和目标文本特征进行简单的插值组合,用于引导图像生成过程,这限制了其编辑能力,同时微调大型扩散模型极易出现过拟合且耗时长的问题。提出了一种基于映射融合嵌入扩散模型的文本引导图像编辑方法(Text-guided image editing method based on diffusion model with mapping-fusion embedding,MFE-Diffusion)。该方法由两部分组成:(1)大型预训练扩散模型与源文本特征向量联合学习框架,使模型可以快速学习以重建给定的原图像;(2)特征映射融合模块,深度融合目标文本与原图像的特征信息,生成条件嵌入,用于引导图像编辑过程。在具有挑战性的文本引导图像编辑基准TEdBench上进行实验验证,结果表明所提方法在图像编辑性能上具有优势。