The main purpose of this paper is to investigate the univalence of normalized polyharmonic mappings with bounded length distortions in the unit disk.We first establish the coefficient estimates for polyharmonic mappin...The main purpose of this paper is to investigate the univalence of normalized polyharmonic mappings with bounded length distortions in the unit disk.We first establish the coefficient estimates for polyharmonic mappings with bounded length distortions.Then,using these results,we establish five Landau-type theorems for subclasses of polyharmonic mappings F and L(F),where F has bounded length distortion and L is a differential operator.展开更多
In this paper,we first obtain the precise values of the univalent radius and the Bloch constant for harmonic mappings of the formL(f)=zfz-zfz,where f represents normalized harmonic mappings with bounded dilation.Then,...In this paper,we first obtain the precise values of the univalent radius and the Bloch constant for harmonic mappings of the formL(f)=zfz-zfz,where f represents normalized harmonic mappings with bounded dilation.Then,using these results,we present better estimations for the Bloch constants of certain harmonic mappings L(f),where f is a K-quasiregular harmonic or open harmonic.Finally,we establish three versions of BlochLandau type theorem for biharmonic mappings of the form L(f).These results are sharp in some given cases and improve the related results of earlier authors.展开更多
In this paper,we investigate subelliptic harmonic maps with a potential from noncompact complete sub-Riemannian manifolds corresponding to totally geodesic Riemannian foliations.Under some suitable conditions,we give ...In this paper,we investigate subelliptic harmonic maps with a potential from noncompact complete sub-Riemannian manifolds corresponding to totally geodesic Riemannian foliations.Under some suitable conditions,we give the gradient estimates of these maps and establish a Liouville type result.展开更多
By using the simplified method of factorization given by Valli, and the correspondence between the harmonic map φ∶S 2→U(N) and U(N) uniton bundle ν(φ) with energy corresponding to the bundles’ seco...By using the simplified method of factorization given by Valli, and the correspondence between the harmonic map φ∶S 2→U(N) and U(N) uniton bundle ν(φ) with energy corresponding to the bundles’ second Chern class, which is established by Anand, the energy in a case φ∶S 2→U(N) is investigated in order to estimate the energy of a uniton using the uniton number. It is proved that Uhlenbeck’s factorization is energy decreasing. And a method of estimating the energy of a uniton by the uniton number is given.展开更多
In this paper, we investigate biharmonic maps from a complete Riemannian manifold into a Riemannian manifold with non-positive sectional curvature. We obtain some non-existence results for these maps.
Let O be a closed geodesic polygon in S2. Maps from O into S2 are said to satisfy tangent boundary conditions if the edges of O are mapped into the geodesics which contain them. Taking O to be an octant of S2, we comp...Let O be a closed geodesic polygon in S2. Maps from O into S2 are said to satisfy tangent boundary conditions if the edges of O are mapped into the geodesics which contain them. Taking O to be an octant of S2, we compute the infimum Dirichlet energy 6(H) for continuous maps satisfying tangent boundary conditions of arbitrary homotopy type H. The expression for C(H) involves a topological invariant - the spelling length - associated with the (non-abelian) fundamental group of the n-times punctured two-sphere, π1(S2 - {s1,..., sn}, *). The lower bound for C(H) is obtained from combinatorial group theory arguments, while the upper bound is obtained by constructing explicit representatives which, on all but an arbitrarily small subset of O, are alternatively locally conformal or anticonformal. For conformal and anticonformal classes (classes containing wholly conformal and anticonformal representatives respectively), the expression for C(H) reduces to a previous result involving the degrees of a set of regular values sl,…… sn in the target 82 space. These degrees may be viewed as invariants associated with the abelianization of vr1(S2 - {s1,..., sn}, *). For nonconformal classes, however, ε(H) may be strictly greater than the abelian bound. This stems from the fact that, for nonconformal maps, the number of preimages of certain regular values may necessarily be strictly greater than the absolute value of their degrees. This work is motivated by the theoretical modelling of nematic liquid crystals in confined polyhedral geometries. The results imply new lower and upper bounds for the Dirichlet energy (one-constant Oseen-Frank energy) of reflection-symmetric tangent unitvector fields in a rectangular prism.展开更多
In this survey article,we present two applications of surface curvatures in theoretical physics.The first application arises from biophysics in the study of the shape of cell vesicles involving the minimization of a m...In this survey article,we present two applications of surface curvatures in theoretical physics.The first application arises from biophysics in the study of the shape of cell vesicles involving the minimization of a mean curvature type energy called the Helfrich bending energy.In this formalism,the equilibrium shape of a cell vesicle may present itself in a rich variety of geometric and topological characteristics.We first show that there is an obstruction,arising from the spontaneous curvature,to the existence of a minimizer of the Helfrich energy over the set of embedded ring tori.We then propose a scale-invariant anisotropic bending energy,which extends the Canham energy,and show that it possesses a unique toroidal energy minimizer,up to rescaling,in all parameter regime.Furthermore,we establish some genus-dependent topological lower and upper bounds,which are known to be lacking with the Helfrich energy,for the proposed energy.We also present the shape equation in our context,which extends the Helfrich shape equation.The second application arises from astrophysics in the search for a mechanism for matter accretion in the early universe in the context of cosmic strings.In this formalism,gravitation may simply be stored over a two-surface so that the Einstein tensor is given in terms of the Gauss curvature of the surface which relates itself directly to the Hamiltonian energy density of the matter sector.This setting provides a lucid exhibition of the interplay of the underlying geometry,matter energy,and topological characterization of the system.In both areas of applications,we encounter highly challenging nonlinear partial differential equation problems.We demonstrate that studies on these equations help us to gain understanding of the theoretical physics problems considered.展开更多
基金supported by the Natural Science Foundation of Guangdong Province(2021A1515010058)supported by the Youth Innovation Foundation of Shenzhen Polytechnic University(6024310023K)。
文摘The main purpose of this paper is to investigate the univalence of normalized polyharmonic mappings with bounded length distortions in the unit disk.We first establish the coefficient estimates for polyharmonic mappings with bounded length distortions.Then,using these results,we establish five Landau-type theorems for subclasses of polyharmonic mappings F and L(F),where F has bounded length distortion and L is a differential operator.
基金supported by the Natural Science Foundation of Guangdong Province(2021A1515010058)。
文摘In this paper,we first obtain the precise values of the univalent radius and the Bloch constant for harmonic mappings of the formL(f)=zfz-zfz,where f represents normalized harmonic mappings with bounded dilation.Then,using these results,we present better estimations for the Bloch constants of certain harmonic mappings L(f),where f is a K-quasiregular harmonic or open harmonic.Finally,we establish three versions of BlochLandau type theorem for biharmonic mappings of the form L(f).These results are sharp in some given cases and improve the related results of earlier authors.
文摘In this paper,we investigate subelliptic harmonic maps with a potential from noncompact complete sub-Riemannian manifolds corresponding to totally geodesic Riemannian foliations.Under some suitable conditions,we give the gradient estimates of these maps and establish a Liouville type result.
文摘By using the simplified method of factorization given by Valli, and the correspondence between the harmonic map φ∶S 2→U(N) and U(N) uniton bundle ν(φ) with energy corresponding to the bundles’ second Chern class, which is established by Anand, the energy in a case φ∶S 2→U(N) is investigated in order to estimate the energy of a uniton using the uniton number. It is proved that Uhlenbeck’s factorization is energy decreasing. And a method of estimating the energy of a uniton by the uniton number is given.
基金Supported by the Natural Natural Science Foundation of China(11201400)Supported by the Basic and Frontier Technology Research Project of Henan Province(142300410433)Supported by the Project for Youth Teacher of Xinyang Normal University(2014-QN-061)
文摘In this paper, we investigate biharmonic maps from a complete Riemannian manifold into a Riemannian manifold with non-positive sectional curvature. We obtain some non-existence results for these maps.
基金supported by a Royal Commission for the Exhibition of 1851 Research Fellowship between 2006-2008supported by Award No.KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST) to the Oxford Centre for Collaborative Applied Mathematics
文摘Let O be a closed geodesic polygon in S2. Maps from O into S2 are said to satisfy tangent boundary conditions if the edges of O are mapped into the geodesics which contain them. Taking O to be an octant of S2, we compute the infimum Dirichlet energy 6(H) for continuous maps satisfying tangent boundary conditions of arbitrary homotopy type H. The expression for C(H) involves a topological invariant - the spelling length - associated with the (non-abelian) fundamental group of the n-times punctured two-sphere, π1(S2 - {s1,..., sn}, *). The lower bound for C(H) is obtained from combinatorial group theory arguments, while the upper bound is obtained by constructing explicit representatives which, on all but an arbitrarily small subset of O, are alternatively locally conformal or anticonformal. For conformal and anticonformal classes (classes containing wholly conformal and anticonformal representatives respectively), the expression for C(H) reduces to a previous result involving the degrees of a set of regular values sl,…… sn in the target 82 space. These degrees may be viewed as invariants associated with the abelianization of vr1(S2 - {s1,..., sn}, *). For nonconformal classes, however, ε(H) may be strictly greater than the abelian bound. This stems from the fact that, for nonconformal maps, the number of preimages of certain regular values may necessarily be strictly greater than the absolute value of their degrees. This work is motivated by the theoretical modelling of nematic liquid crystals in confined polyhedral geometries. The results imply new lower and upper bounds for the Dirichlet energy (one-constant Oseen-Frank energy) of reflection-symmetric tangent unitvector fields in a rectangular prism.
基金Supported by National Natural Science Foundation of China(Grant No.11471100)。
文摘In this survey article,we present two applications of surface curvatures in theoretical physics.The first application arises from biophysics in the study of the shape of cell vesicles involving the minimization of a mean curvature type energy called the Helfrich bending energy.In this formalism,the equilibrium shape of a cell vesicle may present itself in a rich variety of geometric and topological characteristics.We first show that there is an obstruction,arising from the spontaneous curvature,to the existence of a minimizer of the Helfrich energy over the set of embedded ring tori.We then propose a scale-invariant anisotropic bending energy,which extends the Canham energy,and show that it possesses a unique toroidal energy minimizer,up to rescaling,in all parameter regime.Furthermore,we establish some genus-dependent topological lower and upper bounds,which are known to be lacking with the Helfrich energy,for the proposed energy.We also present the shape equation in our context,which extends the Helfrich shape equation.The second application arises from astrophysics in the search for a mechanism for matter accretion in the early universe in the context of cosmic strings.In this formalism,gravitation may simply be stored over a two-surface so that the Einstein tensor is given in terms of the Gauss curvature of the surface which relates itself directly to the Hamiltonian energy density of the matter sector.This setting provides a lucid exhibition of the interplay of the underlying geometry,matter energy,and topological characterization of the system.In both areas of applications,we encounter highly challenging nonlinear partial differential equation problems.We demonstrate that studies on these equations help us to gain understanding of the theoretical physics problems considered.