Experiments involving a sonar platform with a sound absorption wedge were carried out for the purpose of obtaining the low frequency acoustic characteristics. Acoustic characteristics of a sonar platform model with a ...Experiments involving a sonar platform with a sound absorption wedge were carried out for the purpose of obtaining the low frequency acoustic characteristics. Acoustic characteristics of a sonar platform model with a sound absorption wedge were measured, and the effects of different wedge laid areas on platform acoustic characteristic were tested. Vibration acceleration and self-noise caused by model vibration were measured in four conditions: 0%, 36%, 60%, and 100% of wedge laid area when the sonar platform was under a single frequency excitation force. An experiment was performed to validate a corresponding numerical calculation. The numerical vibration characteristics of platform area were calculated by the finite element method, and self-noise caused by the vibration in it was predicted by an experiential formula. The conclusions prove that the numerical calculation method can partially replace the experimental process for obtaining vibration and sound characteristics.展开更多
Once a train stops in a tunnel section and requires emergency evacuation,the large distance between stations and long walking distances in the underground spaces of suburban railway systems pose potential risks to the...Once a train stops in a tunnel section and requires emergency evacuation,the large distance between stations and long walking distances in the underground spaces of suburban railway systems pose potential risks to the evacuation process on tunnel platforms,especially in complex environments.This study utilized Virtual Reality(VR)technology to construct a virtual experimental platform for tunnel evacuation in suburban railway systems,simulating different combinations of smoke and obstacle conditions.By requiring participants to wear VR glasses and walk on an omnidirectional treadmill for moving,as well as complete psychological questionnaires,the study reveals the influences of No Guiding(NG)signs,Wall-Guided(WG)signs,and Central axis Guidance(CG)signs on the movement abilities and psychological behaviors of participants contrastively.The results show that either smoke conditions or obstacle positions affect the mental stress of participants,and the guidance sign has a positive effect on reducing the mental stress.There is an inverse relationship between mental stress and movement abilities.WG and CG signs respectively lead participants to walk closer to walls and along the central axis,which is conducive to reducing the variation in participants’behavior characteristics when circumventing obstacles on the wall side or track side under smoke conditions,respectively.Additionally,CG signs reduce the speed fluctuations of participants before circumventing obstacles,improving the stability of the distance from the wall and speed under smoke conditions,compared to NG and WG signs.These findings contribute to understanding the evacuation psychological-behavioral-movement characteristics of pedestrians on evacuation platforms in suburban railway tunnels and provide a basis for improving the safety design of evacuation guidance signs.展开更多
Sloshing experiment is crucial to determine the reaction performance of regeneration columns on an offshore floating platform.A novel type of column motion simulating device and a Marine Predator Algorithm-based Slidi...Sloshing experiment is crucial to determine the reaction performance of regeneration columns on an offshore floating platform.A novel type of column motion simulating device and a Marine Predator Algorithm-based Sliding Mode Controller(MPA-SMC)are proposed for such sloshing experiments.The simulator consists of a Stewart platform and a steel framework.The Stewart platform is located at the column's center of gravity(CoG)and supported by the steel framework.The platform's hydraulic servo system is controlled by a sliding mode controller with parameters optimized by MPA to improve robustness and precision.A numerical sloshing experiment is conducted using the proposed device and controller.The results show that the novel motion simulator has lower torque during the column sloshes,and the proposed controller performs better than a well-tuned PID controller in terms of target tracking precision and anti-interference capability.展开更多
Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum...Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum communication, and utilize the logical relationship between the measurements of each node to derive the unitary operation performed by the end node. The hierarchical simultaneous entanglement switching(HSES) method is adopted, resulting in a significant reduction in the consumption of classical information compared to multi-hop quantum teleportation(QT)based on general simultaneous entanglement switching(SES). In addition, the proposed protocol is simulated on the IBM Quantum Experiment platform(IBM QE). Then, the data obtained from the experiment are analyzed using quantum state tomography, which verifies the protocol's good fidelity and accuracy. Finally, by calculating fidelity, we analyze the impact of four different types of noise(phase-damping, amplitude-damping, phase-flip and bit-flip) in this protocol.展开更多
基金Supported by Harbin Talents of Science and Technology Innovation Special Fund(2011RFQXG021)
文摘Experiments involving a sonar platform with a sound absorption wedge were carried out for the purpose of obtaining the low frequency acoustic characteristics. Acoustic characteristics of a sonar platform model with a sound absorption wedge were measured, and the effects of different wedge laid areas on platform acoustic characteristic were tested. Vibration acceleration and self-noise caused by model vibration were measured in four conditions: 0%, 36%, 60%, and 100% of wedge laid area when the sonar platform was under a single frequency excitation force. An experiment was performed to validate a corresponding numerical calculation. The numerical vibration characteristics of platform area were calculated by the finite element method, and self-noise caused by the vibration in it was predicted by an experiential formula. The conclusions prove that the numerical calculation method can partially replace the experimental process for obtaining vibration and sound characteristics.
基金supported by the National Natural Science Foundation of China(Grant Number 52472322)the Shanghai Sailing Program(Grant Number 21YF1415800)+1 种基金the Open Project of Key Laboratory of Advanced Public Transportation Science(Grant Number 2023-APTS-05)the Shanghai SASAC Enterprise Innovation and Capability Enhancement Project(Grant Number 2022016,2023020).
文摘Once a train stops in a tunnel section and requires emergency evacuation,the large distance between stations and long walking distances in the underground spaces of suburban railway systems pose potential risks to the evacuation process on tunnel platforms,especially in complex environments.This study utilized Virtual Reality(VR)technology to construct a virtual experimental platform for tunnel evacuation in suburban railway systems,simulating different combinations of smoke and obstacle conditions.By requiring participants to wear VR glasses and walk on an omnidirectional treadmill for moving,as well as complete psychological questionnaires,the study reveals the influences of No Guiding(NG)signs,Wall-Guided(WG)signs,and Central axis Guidance(CG)signs on the movement abilities and psychological behaviors of participants contrastively.The results show that either smoke conditions or obstacle positions affect the mental stress of participants,and the guidance sign has a positive effect on reducing the mental stress.There is an inverse relationship between mental stress and movement abilities.WG and CG signs respectively lead participants to walk closer to walls and along the central axis,which is conducive to reducing the variation in participants’behavior characteristics when circumventing obstacles on the wall side or track side under smoke conditions,respectively.Additionally,CG signs reduce the speed fluctuations of participants before circumventing obstacles,improving the stability of the distance from the wall and speed under smoke conditions,compared to NG and WG signs.These findings contribute to understanding the evacuation psychological-behavioral-movement characteristics of pedestrians on evacuation platforms in suburban railway tunnels and provide a basis for improving the safety design of evacuation guidance signs.
文摘Sloshing experiment is crucial to determine the reaction performance of regeneration columns on an offshore floating platform.A novel type of column motion simulating device and a Marine Predator Algorithm-based Sliding Mode Controller(MPA-SMC)are proposed for such sloshing experiments.The simulator consists of a Stewart platform and a steel framework.The Stewart platform is located at the column's center of gravity(CoG)and supported by the steel framework.The platform's hydraulic servo system is controlled by a sliding mode controller with parameters optimized by MPA to improve robustness and precision.A numerical sloshing experiment is conducted using the proposed device and controller.The results show that the novel motion simulator has lower torque during the column sloshes,and the proposed controller performs better than a well-tuned PID controller in terms of target tracking precision and anti-interference capability.
基金Project supported by the Open Fund of Anhui Key Laboratory of Mine Intelligent Equipment and Technology (Grant No. ZKSYS202204)the Talent Introduction Fund of Anhui University of Science and Technology (Grant No. 2021yjrc34)the Scientific Research Fund of Anhui Provincial Education Department (Grant No. KJ2020A0301)。
文摘Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum communication, and utilize the logical relationship between the measurements of each node to derive the unitary operation performed by the end node. The hierarchical simultaneous entanglement switching(HSES) method is adopted, resulting in a significant reduction in the consumption of classical information compared to multi-hop quantum teleportation(QT)based on general simultaneous entanglement switching(SES). In addition, the proposed protocol is simulated on the IBM Quantum Experiment platform(IBM QE). Then, the data obtained from the experiment are analyzed using quantum state tomography, which verifies the protocol's good fidelity and accuracy. Finally, by calculating fidelity, we analyze the impact of four different types of noise(phase-damping, amplitude-damping, phase-flip and bit-flip) in this protocol.