期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Haar小波下采样优化YOLOv9的道路车辆和行人检测 被引量:12
1
作者 李琳 靳志鑫 +1 位作者 俞晓磊 王安红 《计算机工程与应用》 CSCD 北大核心 2024年第20期207-214,共8页
在当前智能化、信息化的大背景下,为了实现无人驾驶模式复杂环境中智能收集道路的行人和车辆目标,提出了一种基于Haar小波下采样(Haar wavelet downsampling,HWD)的YOLOv9算法(HWD_YOLOv9)用于车辆与行人目标检测。Haar小波的下采样操作... 在当前智能化、信息化的大背景下,为了实现无人驾驶模式复杂环境中智能收集道路的行人和车辆目标,提出了一种基于Haar小波下采样(Haar wavelet downsampling,HWD)的YOLOv9算法(HWD_YOLOv9)用于车辆与行人目标检测。Haar小波的下采样操作,降低特征图的空间分辨率,尽可能保留了边缘、纹路等细节信息,有效降低了信息的不确定性。采用交叉熵损失和广义骰子损失之和作为网络的损失函数,可以有效地度量概率分布之间的差异,且逐像素进行骰子损失计算,便于优化网络。实验结果显示,在KITTY数据集上,所提模型的平均精度均值达到了95.86%,检测帧率达到了179 FPS。与YOLOv9相比,改进后的算法能够精确地识别出复杂道路上不同尺度的车辆与行人,改善了原检测算法中的计算容量的冗余和小目标的漏检问题,为智能化的无人驾驶提供了视觉技术支持。 展开更多
关键词 小目标检测 车辆行人 YOLOv9 深度学习 haar小波下采样
在线阅读 下载PDF
改进RT-DETR的遥感图像小目标检测算法
2
作者 沈涛 张秀再 许岱 《计算机科学》 北大核心 2025年第8期214-221,共8页
针对遥感图像目标检测算法漏检率和误检率高,且对小目标检测效果差的问题,提出一种改进RT-DETR(Real-Time Detection Transformer)的目标检测算法。为提升模型对遥感图像中不同尺寸目标的检测能力,采用可变核卷积与多样化分支结构,丰富... 针对遥感图像目标检测算法漏检率和误检率高,且对小目标检测效果差的问题,提出一种改进RT-DETR(Real-Time Detection Transformer)的目标检测算法。为提升模型对遥感图像中不同尺寸目标的检测能力,采用可变核卷积与多样化分支结构,丰富多尺度表征能力;为避免下采样造成小目标信息丢失的问题,采用Haar小波下采样保留尽可能多的特征信息;针对小目标特征信息在复杂的网络迭代与池化中丢失的问题,设计SPABC3模块,通过对称激活函数和残差连接增强检测目标信息和抑制冗余信息。实验结果表明,改进RT-DETR算法在VisDrone2019数据集和RSOD数据集上,mAP@0.5分别达到42.7%和95.3%,优于其他对比主流算法,提升了对遥感图像中小目标的检测精度,满足遥感图像小目标的检测需求。 展开更多
关键词 小目标检测 RT-DETR 可变核卷积 haar小波下采样 Swift无参数注意力
在线阅读 下载PDF
融合注意力机制的改进型DeepLabv3+语义分割
3
作者 闫河 雷秋霞 王旭 《光学精密工程》 北大核心 2025年第1期123-134,共12页
针对DeepLabv3+语义分割网络计算复杂度高、对图像细节提取能力弱、分割的图像边界模糊的问题,提出了一种融合注意力机制的改进型DeepLabv3+语义分割网络。以轻量级网络MobileNetV2为骨干,在保持较高表征能力的同时显著减少模型参数,在... 针对DeepLabv3+语义分割网络计算复杂度高、对图像细节提取能力弱、分割的图像边界模糊的问题,提出了一种融合注意力机制的改进型DeepLabv3+语义分割网络。以轻量级网络MobileNetV2为骨干,在保持较高表征能力的同时显著减少模型参数,在骨干网络的低层特征后面加入轻量级、无参数注意力机制(Simple,Parameter-Free Attention Module,SimAM),对输入的特征进行加权,以增强关键特征的提取能力。将ASPP模块的全局平均池化替换成Haar小波变换下采样(Haar Wavelet Downsampling,HWD),以避免丢失空间信息,同时在ASPP模块之后加入外部注意力机制(External Attention,EANet),以更好地利用上下文信息,实现多尺度融合,从而提升语义理解能力和语义分割的准确性。实验结果表明,该模型在VOC2012数据集上相较于原有的DeepLabv3+语义分割模型,平均交并比(mIoU)提高了2.82%。本文提出的改进模型显著提高了模型语义分割的精度,为计算机视觉领域应用提供了新的思路。 展开更多
关键词 语义分割 DeepLabv3+ haar小变换下采样 外部注意力机制 多尺度融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部