期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Haar小波下采样优化YOLOv9的道路车辆和行人检测 被引量:12
1
作者 李琳 靳志鑫 +1 位作者 俞晓磊 王安红 《计算机工程与应用》 CSCD 北大核心 2024年第20期207-214,共8页
在当前智能化、信息化的大背景下,为了实现无人驾驶模式复杂环境中智能收集道路的行人和车辆目标,提出了一种基于Haar小波下采样(Haar wavelet downsampling,HWD)的YOLOv9算法(HWD_YOLOv9)用于车辆与行人目标检测。Haar小波的下采样操作... 在当前智能化、信息化的大背景下,为了实现无人驾驶模式复杂环境中智能收集道路的行人和车辆目标,提出了一种基于Haar小波下采样(Haar wavelet downsampling,HWD)的YOLOv9算法(HWD_YOLOv9)用于车辆与行人目标检测。Haar小波的下采样操作,降低特征图的空间分辨率,尽可能保留了边缘、纹路等细节信息,有效降低了信息的不确定性。采用交叉熵损失和广义骰子损失之和作为网络的损失函数,可以有效地度量概率分布之间的差异,且逐像素进行骰子损失计算,便于优化网络。实验结果显示,在KITTY数据集上,所提模型的平均精度均值达到了95.86%,检测帧率达到了179 FPS。与YOLOv9相比,改进后的算法能够精确地识别出复杂道路上不同尺度的车辆与行人,改善了原检测算法中的计算容量的冗余和小目标的漏检问题,为智能化的无人驾驶提供了视觉技术支持。 展开更多
关键词 小目标检测 车辆行人 YOLOv9 深度学习 haar小波下采样
在线阅读 下载PDF
SG-UNet:基于全局注意力和自校准卷积增强的黑色素瘤分割模型
2
作者 计寰宇 王蕊 +1 位作者 高盛祥 车文刚 《南方医科大学学报》 北大核心 2025年第6期1317-1326,共10页
目的 提出了一种新的黑色素瘤分割模型SG-UNet,以提高黑色素瘤皮肤镜图像的精确分割。通过分割后边界特征评估,可以更准确地识别诊断黑色素瘤从而辅助早期诊断。方法 使用一种U形结构的卷积神经网络UNet,对其主干、跳跃连接和下采样池... 目的 提出了一种新的黑色素瘤分割模型SG-UNet,以提高黑色素瘤皮肤镜图像的精确分割。通过分割后边界特征评估,可以更准确地识别诊断黑色素瘤从而辅助早期诊断。方法 使用一种U形结构的卷积神经网络UNet,对其主干、跳跃连接和下采样池化部分进行改进。在主干部分,我们将UNet的下采样部分参考Vgg的结构将卷积数量由10个增加到13个加深网络层次来捕获更加精细的特征表示。为了进一步提升特征提取和细节识别的能力,主干部分将传统的卷积替换为自校准卷积增强模型对空间维度和通道维度特征的捕获能力。同时,在池化部分将哈尔小波下采样替换原有的池化层实现更有效的多尺度特征融合,并降低特征图的空间分辨率。接着将全局注意力机制融入到每一层的跳跃连接中更好地理解图像的上下文信息。结果实验结果表明SG-UNet在ISIC 2017和ISIC 2018数据集上的分割效果对比目前其他先进分割模型得到明显提升。在ISIC2017和ISIC 2018数据集上Dice,IoU分别达到了92.41%,86.62%和92.31%,86.48%。结论 实验结果证实,所提出的方法能够有效实现黑色素瘤的精确分割。 展开更多
关键词 图像分割 全局注意力机制 黑色素瘤 UNet 自校准卷积 哈尔小波下采样 SG-UNet
在线阅读 下载PDF
改进RT-DETR的遥感图像小目标检测算法
3
作者 沈涛 张秀再 许岱 《计算机科学》 北大核心 2025年第8期214-221,共8页
针对遥感图像目标检测算法漏检率和误检率高,且对小目标检测效果差的问题,提出一种改进RT-DETR(Real-Time Detection Transformer)的目标检测算法。为提升模型对遥感图像中不同尺寸目标的检测能力,采用可变核卷积与多样化分支结构,丰富... 针对遥感图像目标检测算法漏检率和误检率高,且对小目标检测效果差的问题,提出一种改进RT-DETR(Real-Time Detection Transformer)的目标检测算法。为提升模型对遥感图像中不同尺寸目标的检测能力,采用可变核卷积与多样化分支结构,丰富多尺度表征能力;为避免下采样造成小目标信息丢失的问题,采用Haar小波下采样保留尽可能多的特征信息;针对小目标特征信息在复杂的网络迭代与池化中丢失的问题,设计SPABC3模块,通过对称激活函数和残差连接增强检测目标信息和抑制冗余信息。实验结果表明,改进RT-DETR算法在VisDrone2019数据集和RSOD数据集上,mAP@0.5分别达到42.7%和95.3%,优于其他对比主流算法,提升了对遥感图像中小目标的检测精度,满足遥感图像小目标的检测需求。 展开更多
关键词 小目标检测 RT-DETR 可变核卷积 haar小波下采样 Swift无参数注意力
在线阅读 下载PDF
基于改进Vision Transformer的遥感图像分类研究
4
作者 李宗轩 冷欣 +1 位作者 章磊 陈佳凯 《林业机械与木工设备》 2025年第6期31-35,共5页
通过遥感图像分类能够快速有效获取森林区域分布,为林业资源管理监测提供支持。Vision Transformer(ViT)凭借优秀的全局信息捕捉能力在遥感图像分类任务中广泛应用。但Vision Transformer在浅层特征提取时会冗余捕捉其他局部特征而无法... 通过遥感图像分类能够快速有效获取森林区域分布,为林业资源管理监测提供支持。Vision Transformer(ViT)凭借优秀的全局信息捕捉能力在遥感图像分类任务中广泛应用。但Vision Transformer在浅层特征提取时会冗余捕捉其他局部特征而无法有效捕获关键特征,并且Vision Transformer在将图像分割为patch过程中可能会导致边缘等细节信息的丢失,从而影响分类准确性。针对上述问题提出一种改进Vision Transformer,引入了STA(Super Token Attention)注意力机制来增强Vision Transformer对关键特征信息的提取并减少计算冗余度,还通过加入哈尔小波下采样(Haar Wavelet Downsampling)在减少细节信息丢失的同时增强对图像不同尺度局部和全局信息的捕获能力。通过实验在AID数据集上达到了92.98%的总体准确率,证明了提出方法的有效性。 展开更多
关键词 遥感图像分类 Vision Transformer 哈尔小波下采样 STA注意力机制
在线阅读 下载PDF
融合注意力机制的改进型DeepLabv3+语义分割
5
作者 闫河 雷秋霞 王旭 《光学精密工程》 北大核心 2025年第1期123-134,共12页
针对DeepLabv3+语义分割网络计算复杂度高、对图像细节提取能力弱、分割的图像边界模糊的问题,提出了一种融合注意力机制的改进型DeepLabv3+语义分割网络。以轻量级网络MobileNetV2为骨干,在保持较高表征能力的同时显著减少模型参数,在... 针对DeepLabv3+语义分割网络计算复杂度高、对图像细节提取能力弱、分割的图像边界模糊的问题,提出了一种融合注意力机制的改进型DeepLabv3+语义分割网络。以轻量级网络MobileNetV2为骨干,在保持较高表征能力的同时显著减少模型参数,在骨干网络的低层特征后面加入轻量级、无参数注意力机制(Simple,Parameter-Free Attention Module,SimAM),对输入的特征进行加权,以增强关键特征的提取能力。将ASPP模块的全局平均池化替换成Haar小波变换下采样(Haar Wavelet Downsampling,HWD),以避免丢失空间信息,同时在ASPP模块之后加入外部注意力机制(External Attention,EANet),以更好地利用上下文信息,实现多尺度融合,从而提升语义理解能力和语义分割的准确性。实验结果表明,该模型在VOC2012数据集上相较于原有的DeepLabv3+语义分割模型,平均交并比(mIoU)提高了2.82%。本文提出的改进模型显著提高了模型语义分割的精度,为计算机视觉领域应用提供了新的思路。 展开更多
关键词 语义分割 DeepLabv3+ haar小波变换下采样 外部注意力机制 多尺度融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部