Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collabora...Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method.展开更多
Let Qn,k (n 〉 3, 1 〈 k ≤ n - 1) be an n-dimensional enhanced hypercube which is an attractive variant of the hypercube and can be obtained by adding some complementary edges, fv and fe be the numbers of faulty ve...Let Qn,k (n 〉 3, 1 〈 k ≤ n - 1) be an n-dimensional enhanced hypercube which is an attractive variant of the hypercube and can be obtained by adding some complementary edges, fv and fe be the numbers of faulty vertices and faulty edges, respectively. In this paper, we give three main results. First, a fault-free path P[u, v] of length at least 2n - 2fv - 1 (respectively, 2n - 2fv - 2) can be embedded on Qn,k with fv + f≤ n- 1 when dQn,k (u, v) is odd (respectively, dQ,~,k (u, v) is even). Secondly, an Q,,k is (n - 2) edgefault-free hyper Hamiltonianaceable when n ( 3) and k have the same parity. Lastly, a fault-free cycle of length at least 2n - 2fv can be embedded on Qn,k with f~ 〈 n - 1 and fv+f≤2n-4.展开更多
P Kulasinghe and S Bettayeb showed that any multiply-twisted hypercube withfive or more dimensions is not vertex-transitive. This note shows that any multiply-twistedhypercube with four or less dimensions is vertex-tr...P Kulasinghe and S Bettayeb showed that any multiply-twisted hypercube withfive or more dimensions is not vertex-transitive. This note shows that any multiply-twistedhypercube with four or less dimensions is vertex-transitive, and that any multiply-twistedhypercube with three or larger dimensions is not edge-transitive.展开更多
In this paper, we study the enhanced hypercube, an attractive variant of the hypercube and obtained by adding some complementary edges from a hypercube, and focus on cycles embedding on the enhanced hypercube with fau...In this paper, we study the enhanced hypercube, an attractive variant of the hypercube and obtained by adding some complementary edges from a hypercube, and focus on cycles embedding on the enhanced hypercube with faulty vertices. Let Fu be the set of faulty vertices in the n-dimensional enhanced hypercube Qn,k (n ≥ 3, 1 ≤ k 〈≤n - 1). When IFvl = 2, we showed that Qn,k - Fv contains a fault-free cycle of every even length from 4 to 2n - 4 where n (n ≥ 3) and k have the same parity; and contains a fault-free cycle of every even length from 4 to 2n - 4, simultaneously, contains a cycle of every odd length from n-k + 2 to 2^n-3 where n (≥ 3) and k have the different parity. Furthermore, when |Fv| = fv ≤ n - 2, we prove that there exists the longest fault-free cycle, which is of even length 2^n - 2fv whether n (n ≥ 3) and k have the same parity or not; and there exists the longest fault-free cycle, which is of odd length 2^n - 2fv + 1 in Qn,k - Fv where n (≥ 3) and k have the different parity.展开更多
System-level fault identification is a key subject for maintaining the reliability of multiprocessor interconnected systems. This task requires fast and accurate inferences based on big volume of data, and the problem...System-level fault identification is a key subject for maintaining the reliability of multiprocessor interconnected systems. This task requires fast and accurate inferences based on big volume of data, and the problem of fault identification in an unstructured graph has been proved to be NP-hard (non-deterministic polynomial-time hard). In this paper, we adopt the PMC diagnostic model (first proposed by Preparata, Metze, and Chien) as the foundation of point-to-point probing technology, and a system contains only restricted-faults if every of its fault-free units has at least one fault-free neighbor. Under this condition we propose an efficient method of identifying restricted-faults in the folded hypercube, which is a promising alternative to the popular hypercube topology.展开更多
We study embeddings of the n-dimensional hypercube into the circuit with 2nvertices.We prove that the circular wirelength attains a minimum by gray coding;that was called the CT conjecture by Chavez and Trapp(Discrete...We study embeddings of the n-dimensional hypercube into the circuit with 2nvertices.We prove that the circular wirelength attains a minimum by gray coding;that was called the CT conjecture by Chavez and Trapp(Discrete Applied Mathematics,1998).This problem had claimed to be settled by Ching-Jung Guu in her doctoral dissertation“The circular wirelength problem for hypercubes”(University of California,Riverside,1997).Many argue there are gaps in her proof.We eliminate the gaps in her dissertation.展开更多
The ability to predict the anti-interference communications performance of unmanned aerial vehicle(UAV)data links is critical for intelligent route planning of UAVs in real combat scenarios.Previous research in this a...The ability to predict the anti-interference communications performance of unmanned aerial vehicle(UAV)data links is critical for intelligent route planning of UAVs in real combat scenarios.Previous research in this area has encountered several limitations:Classifiers exhibit low training efficiency,their precision is notably reduced when dealing with imbalanced samples,and they cannot be applied to the condition where the UAV’s flight altitude and the antenna bearing vary.This paper proposes the sequential Latin hypercube sampling(SLHS)-support vector machine(SVM)-AdaBoost algorithm,which enhances the training efficiency of the base classifier and circumvents local optima during the search process through SLHS optimization.Additionally,it mitigates the bottleneck of sample imbalance by adjusting the sample weight distribution using the AdaBoost algorithm.Through comparison,the modeling efficiency,prediction accuracy on the test set,and macro-averaged values of precision,recall,and F1-score for SLHS-SVM-AdaBoost are improved by 22.7%,5.7%,36.0%,25.0%,and 34.2%,respectively,compared with Grid-SVM.Additionally,these values are improved by 22.2%,2.1%,11.3%,2.8%,and 7.4%,respectively,compared with particle swarm optimization(PSO)-SVM-AdaBoost.Combining Latin hypercube sampling with the SLHS-SVM-AdaBoost algorithm,the classification prediction model of anti-interference performance of UAV data links,which took factors like three-dimensional position of UAV and antenna bearing into consideration,is established and used to assess the safety of the classical flying path and optimize the flying route.It was found that the risk of loss of communications could not be completely avoided by adjusting the flying altitude based on the classical path,whereas intelligent path planning based on the classification prediction model of anti-interference performance can realize complete avoidance of being interfered meanwhile reducing the route length by at least 2.3%,thus benefiting both safety and operation efficiency.展开更多
This paper presents an actuator used for the trajectory correction fuze,which is subject to high impact loadings during launch.A simulation method is carried out to obtain the peak-peak stress value of each component,...This paper presents an actuator used for the trajectory correction fuze,which is subject to high impact loadings during launch.A simulation method is carried out to obtain the peak-peak stress value of each component,from which the ball bearings are possible failures according to the results.Subsequently,three schemes against impact loadings,full-element deep groove ball bearing and integrated raceway,needle roller thrust bearing assembly,and gaskets are utilized for redesigning the actuator to effectively reduce the bearings’stress.However,multi-objectives optimization still needs to be conducted for the gaskets to decrease the stress value further to the yield stress.Four gasket’s structure parameters and three bearings’peak-peak stress are served as the four optimization variables and three objectives,respectively.Optimized Latin hypercube design is used for generating sample points,and Kriging model selected according to estimation result can establish the relationship between the variables and objectives,representing the simulation which is time-consuming.Accordingly,two optimization algorithms work out the Pareto solutions,from which the best solutions are selected,and verified by the simulation to determine the gaskets optimized structure parameters.It can be concluded that the simulation and optimization method based on these components is effective and efficient.展开更多
We have analytically derived the relaxation function for one-dimensional disordered complex systems in terms of autocorrelation function of fractal time random walk by using operator formalism. We have shown that the ...We have analytically derived the relaxation function for one-dimensional disordered complex systems in terms of autocorrelation function of fractal time random walk by using operator formalism. We have shown that the relaxation function has stretched exponential, i.e. the Kohlrausch-Williams-Watts character for a fractal time random walk process.展开更多
This paper presents the probabilistic analysis of landslides in spatially variable soil deposits, modeled by a stochastic framework which integrates the random field theory with generalized interpolation material poin...This paper presents the probabilistic analysis of landslides in spatially variable soil deposits, modeled by a stochastic framework which integrates the random field theory with generalized interpolation material point method(GIMP). Random fields are simulated using Cholesky matrix decomposition(CMD) method and Latin hypercube sampling(LHS) method, which represent material properties discretized into sets of random soil shear strength variables with statistical properties. The approach is applied to landslides in clayey deposits under undrained conditions with random fields of undrained shear strength parameters, in order to quantify the uncertainties of post-failure behavior at different scales of fluctuation(SOF) and coefficients of variation(COV). Results show that the employed approach can reliably simulate the whole landslide process and assess the uncertainties of runout motions. It is demonstrated that the natural heterogeneity of shear strength in landslides notably influences their post-failure behavior. Compared with a homogeneous landslide model which yields conservative results and underestimation of the risks, consideration of heterogeneity shows larger landslide influence zones. With SOF values increasing, the variances of influence zones also increase, and with higher values of COV, the mean values of the influence zone also increase, resulting in higher uncertainties of post-failure behavior.展开更多
We propose and analyze an efficient high-dimensional quantum state transfer protocol in an XX coupling spin network with a hypercube structure or chain structure. Under free spin wave approximation, unitary evolution ...We propose and analyze an efficient high-dimensional quantum state transfer protocol in an XX coupling spin network with a hypercube structure or chain structure. Under free spin wave approximation, unitary evolution results in a perfect high-dimensional quantum swap operation requiring neither external manipulation nor weak coupling. Evolution time is independent of either distance between registers or dimensions of sent states, which can improve the computational efficiency. In the low temperature regime and thermodynamic limit, the decoherence caused by a noisy environment is studied with a model of an antiferromagnetic spin bath coupled to quantum channels via an Ising-type interaction. It is found that while the decoherence reduces the fidelity of state transfer, increasing intra-channel coupling can strongly suppress such an effect. These observations demonstrate the robustness of the proposed scheme.展开更多
文摘Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method.
基金supported by NSFC (11071096, 11171129)NSF of Hubei Province, China (T201103)
文摘Let Qn,k (n 〉 3, 1 〈 k ≤ n - 1) be an n-dimensional enhanced hypercube which is an attractive variant of the hypercube and can be obtained by adding some complementary edges, fv and fe be the numbers of faulty vertices and faulty edges, respectively. In this paper, we give three main results. First, a fault-free path P[u, v] of length at least 2n - 2fv - 1 (respectively, 2n - 2fv - 2) can be embedded on Qn,k with fv + f≤ n- 1 when dQn,k (u, v) is odd (respectively, dQ,~,k (u, v) is even). Secondly, an Q,,k is (n - 2) edgefault-free hyper Hamiltonianaceable when n ( 3) and k have the same parity. Lastly, a fault-free cycle of length at least 2n - 2fv can be embedded on Qn,k with f~ 〈 n - 1 and fv+f≤2n-4.
基金Supported by ANSF(01046102)Supported by the NNSF of China(10271114)
文摘P Kulasinghe and S Bettayeb showed that any multiply-twisted hypercube withfive or more dimensions is not vertex-transitive. This note shows that any multiply-twistedhypercube with four or less dimensions is vertex-transitive, and that any multiply-twistedhypercube with three or larger dimensions is not edge-transitive.
基金supported by NSFC(11071096 and 11171129)Hubei Province,China(T201103)
文摘In this paper, we study the enhanced hypercube, an attractive variant of the hypercube and obtained by adding some complementary edges from a hypercube, and focus on cycles embedding on the enhanced hypercube with faulty vertices. Let Fu be the set of faulty vertices in the n-dimensional enhanced hypercube Qn,k (n ≥ 3, 1 ≤ k 〈≤n - 1). When IFvl = 2, we showed that Qn,k - Fv contains a fault-free cycle of every even length from 4 to 2n - 4 where n (n ≥ 3) and k have the same parity; and contains a fault-free cycle of every even length from 4 to 2n - 4, simultaneously, contains a cycle of every odd length from n-k + 2 to 2^n-3 where n (≥ 3) and k have the different parity. Furthermore, when |Fv| = fv ≤ n - 2, we prove that there exists the longest fault-free cycle, which is of even length 2^n - 2fv whether n (n ≥ 3) and k have the same parity or not; and there exists the longest fault-free cycle, which is of odd length 2^n - 2fv + 1 in Qn,k - Fv where n (≥ 3) and k have the different parity.
基金supported in part by the NSC under Grand No.NSC102-2221-E-468-018
文摘System-level fault identification is a key subject for maintaining the reliability of multiprocessor interconnected systems. This task requires fast and accurate inferences based on big volume of data, and the problem of fault identification in an unstructured graph has been proved to be NP-hard (non-deterministic polynomial-time hard). In this paper, we adopt the PMC diagnostic model (first proposed by Preparata, Metze, and Chien) as the foundation of point-to-point probing technology, and a system contains only restricted-faults if every of its fault-free units has at least one fault-free neighbor. Under this condition we propose an efficient method of identifying restricted-faults in the folded hypercube, which is a promising alternative to the popular hypercube topology.
文摘We study embeddings of the n-dimensional hypercube into the circuit with 2nvertices.We prove that the circular wirelength attains a minimum by gray coding;that was called the CT conjecture by Chavez and Trapp(Discrete Applied Mathematics,1998).This problem had claimed to be settled by Ching-Jung Guu in her doctoral dissertation“The circular wirelength problem for hypercubes”(University of California,Riverside,1997).Many argue there are gaps in her proof.We eliminate the gaps in her dissertation.
文摘The ability to predict the anti-interference communications performance of unmanned aerial vehicle(UAV)data links is critical for intelligent route planning of UAVs in real combat scenarios.Previous research in this area has encountered several limitations:Classifiers exhibit low training efficiency,their precision is notably reduced when dealing with imbalanced samples,and they cannot be applied to the condition where the UAV’s flight altitude and the antenna bearing vary.This paper proposes the sequential Latin hypercube sampling(SLHS)-support vector machine(SVM)-AdaBoost algorithm,which enhances the training efficiency of the base classifier and circumvents local optima during the search process through SLHS optimization.Additionally,it mitigates the bottleneck of sample imbalance by adjusting the sample weight distribution using the AdaBoost algorithm.Through comparison,the modeling efficiency,prediction accuracy on the test set,and macro-averaged values of precision,recall,and F1-score for SLHS-SVM-AdaBoost are improved by 22.7%,5.7%,36.0%,25.0%,and 34.2%,respectively,compared with Grid-SVM.Additionally,these values are improved by 22.2%,2.1%,11.3%,2.8%,and 7.4%,respectively,compared with particle swarm optimization(PSO)-SVM-AdaBoost.Combining Latin hypercube sampling with the SLHS-SVM-AdaBoost algorithm,the classification prediction model of anti-interference performance of UAV data links,which took factors like three-dimensional position of UAV and antenna bearing into consideration,is established and used to assess the safety of the classical flying path and optimize the flying route.It was found that the risk of loss of communications could not be completely avoided by adjusting the flying altitude based on the classical path,whereas intelligent path planning based on the classification prediction model of anti-interference performance can realize complete avoidance of being interfered meanwhile reducing the route length by at least 2.3%,thus benefiting both safety and operation efficiency.
基金The authors would like to acknowledge National Defense Pre-Research Foundation of China(Grant No.41419030102)to provide fund for conducting experiments.
文摘This paper presents an actuator used for the trajectory correction fuze,which is subject to high impact loadings during launch.A simulation method is carried out to obtain the peak-peak stress value of each component,from which the ball bearings are possible failures according to the results.Subsequently,three schemes against impact loadings,full-element deep groove ball bearing and integrated raceway,needle roller thrust bearing assembly,and gaskets are utilized for redesigning the actuator to effectively reduce the bearings’stress.However,multi-objectives optimization still needs to be conducted for the gaskets to decrease the stress value further to the yield stress.Four gasket’s structure parameters and three bearings’peak-peak stress are served as the four optimization variables and three objectives,respectively.Optimized Latin hypercube design is used for generating sample points,and Kriging model selected according to estimation result can establish the relationship between the variables and objectives,representing the simulation which is time-consuming.Accordingly,two optimization algorithms work out the Pareto solutions,from which the best solutions are selected,and verified by the simulation to determine the gaskets optimized structure parameters.It can be concluded that the simulation and optimization method based on these components is effective and efficient.
文摘We have analytically derived the relaxation function for one-dimensional disordered complex systems in terms of autocorrelation function of fractal time random walk by using operator formalism. We have shown that the relaxation function has stretched exponential, i.e. the Kohlrausch-Williams-Watts character for a fractal time random walk process.
文摘This paper presents the probabilistic analysis of landslides in spatially variable soil deposits, modeled by a stochastic framework which integrates the random field theory with generalized interpolation material point method(GIMP). Random fields are simulated using Cholesky matrix decomposition(CMD) method and Latin hypercube sampling(LHS) method, which represent material properties discretized into sets of random soil shear strength variables with statistical properties. The approach is applied to landslides in clayey deposits under undrained conditions with random fields of undrained shear strength parameters, in order to quantify the uncertainties of post-failure behavior at different scales of fluctuation(SOF) and coefficients of variation(COV). Results show that the employed approach can reliably simulate the whole landslide process and assess the uncertainties of runout motions. It is demonstrated that the natural heterogeneity of shear strength in landslides notably influences their post-failure behavior. Compared with a homogeneous landslide model which yields conservative results and underestimation of the risks, consideration of heterogeneity shows larger landslide influence zones. With SOF values increasing, the variances of influence zones also increase, and with higher values of COV, the mean values of the influence zone also increase, resulting in higher uncertainties of post-failure behavior.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11175094 and 91221205)the National Basic Research Program of China(Grant No.2011CB9216002)support of Center of Atomic and Molecular Nanoscience of Tsinghua University,China
文摘We propose and analyze an efficient high-dimensional quantum state transfer protocol in an XX coupling spin network with a hypercube structure or chain structure. Under free spin wave approximation, unitary evolution results in a perfect high-dimensional quantum swap operation requiring neither external manipulation nor weak coupling. Evolution time is independent of either distance between registers or dimensions of sent states, which can improve the computational efficiency. In the low temperature regime and thermodynamic limit, the decoherence caused by a noisy environment is studied with a model of an antiferromagnetic spin bath coupled to quantum channels via an Ising-type interaction. It is found that while the decoherence reduces the fidelity of state transfer, increasing intra-channel coupling can strongly suppress such an effect. These observations demonstrate the robustness of the proposed scheme.