ZnO is a highly significant II-VI semiconductor known for its excellent optoelectronic properties,making it widely applicable and promising for use in light-emitting devices,solar cells,lasers,and photodetectors.The m...ZnO is a highly significant II-VI semiconductor known for its excellent optoelectronic properties,making it widely applicable and promising for use in light-emitting devices,solar cells,lasers,and photodetectors.The methods for preparing ZnO are diverse,and among them,the hydrothermal method is favored for its simplicity,ease of operation,and low cost,making it an optimal choice for ZnO single-crystal growth.Most studies investigating the effects of different hydrothermal experimental parameters on the morphology and performance of ZnO nano-materials typically focus on only 2—3 variable parameters,with few examining the impact of all possible experimental parameter changes on ZnO nano-mate-rials.The principles of the hydrothermal method and its advantages in nano-material preparation were briefly introduced in this article.The detailed discussion on the influence of various experimental parameters on the preparation of ZnO nano-materials was provided,which including reaction materials,Zn^(2+)/OH^(-)ratio,reaction time and temperature,additives,experimental equipment,and annealing conditions.The review co-vers how different experimental parameters affect the morphology and performance of the materials,as well as how different rare earth doping elements influence the performance of ZnO nano-materials.It is hoped that this work will contribute to future research on the hydrothermal synthesis of nano-materials.展开更多
Currently,the carbothermal reduction-nitridation(CRN)process is the predominant method for preparing aluminum nitride(AlN)powder.Although AlN powder prepared by CRN process exhibits high purity and excellent sintering...Currently,the carbothermal reduction-nitridation(CRN)process is the predominant method for preparing aluminum nitride(AlN)powder.Although AlN powder prepared by CRN process exhibits high purity and excellent sintering activity,it also presents challenges such as the necessity for high reaction temperatures and difficulties in achieving uniform mixing of its raw materials.This study presents a comprehensive investigation into preparation process of AlN nanopowders using a combination of hydrothermal synthesis and CRN.In the hydrothermal reaction,a homogeneous composite precursor consisting of carbon and boehmite(γ-AlOOH)is synthesized at 200℃using aluminum nitrate as the aluminum source,sucrose as the carbon source,and urea as the precipitant.During the hydrothermal process,the precursor develops a core-shell structure,with boehmite tightly coated with carbon(γ-AlOOH@C)due to electrostatic attraction.Compared with conventional precursor,the hydrothermal hybrid offers many advantages,such as ultrafine particles,uniform particle size distribution,good dispersion,high reactivity,and environmental friendliness.The carbon shell enhances thermodynamic stability of γ-Al_(2)O_(3) compared to the corundum phase(α-Al_(2)O_(3))by preventing the loss of the surface area in alumina.This stability enables γ-Al_(2)O_(3) to maintain high reactivity during CRN process,which initiates at 1300℃,and concludes at 1400℃.The underlying mechanisms are substantiated through experiments and thermodynamic calculations.This research provides a robust theoretical and experimental foundation for the hydrothermal combined carbothermal preparation of non-oxide ceramic nanopowders.展开更多
A new adsorbent was successfully prepared by hydrothermal treatment and chemical activation through coal gasification fine slag(CGFS)and blue algae(BA)as raw materials and used for CO_(2)capture.The CO_(2)chemisorptio...A new adsorbent was successfully prepared by hydrothermal treatment and chemical activation through coal gasification fine slag(CGFS)and blue algae(BA)as raw materials and used for CO_(2)capture.The CO_(2)chemisorption capacity of the adsorbent was further enhanced by taking advantage of the nitrogenous bases contained in the BA.In the hydrothermal process,the addition of BA significantly increased the content of pyrrole nitrogen in the adsorbent.In the activation process,pyrrole nitrogen gradually changed into pyridine nitrogen and graphite nitrogen.Increased BA addition result in a higher specific surface area and microporosity of the adsorbent.The CO_(2)adsorption performance test proved that the CGFS-50%-CA sample has the strongest CO_(2)adsorption capacity at low temperature,up to 15.59 cm^(3)/g,which is mainly through physical adsorption,and the CGFS-10%-CA sample has the strongest CO_(2)adsorption capacity at high temperature,up to 7.31 cm^(3)/g,which is mainly through chemical adsorption.CO_(2)uptake of the CGFS-10%-CA sample was well maintained after 10 cycles,with regeneration efficiencies above 99%.The results indicate that the novel adsorbents with coexistence of physical and chemical adsorption have great potential for CO_(2)adsorption applications.展开更多
To optimize the CO_(2) adsorption performance of carbon materials,this study proposed a preparation method for biomass-based porous carbon through hydrothermal carbonization coupled with nitrogen source optimization a...To optimize the CO_(2) adsorption performance of carbon materials,this study proposed a preparation method for biomass-based porous carbon through hydrothermal carbonization coupled with nitrogen source optimization and K_(2)CO_(3) activation.The effects of different nitrogen sources(urea,piperazine,melamine,and polyaniline)and activation temperatures on the physicochemical features and CO_(2) adsorption characteristics of the porous carbons were systematically investigated.The results indicated that different nitrogen sources showed varying impacts on the CO_(2) uptake of porous carbons,and not all nitrogen sources enhanced the adsorption performance.The urea and piperazine doped porous carbons exhibited relatively low nitrogen contents and specific surface areas.Whereas the melamine doped carbons showed higher nitrogen contents and specific surface areas,but lacked narrow micropores,limiting their CO_(2) adsorption performance.In contrast,PAC-700,prepared using polyaniline as nitrogen source,featured a well-developed pore structure,abundant narrow micropores and pyrrolic-N groups,endowing it with enhanced CO_(2) adsorption capability.At 0℃/1 bar and 25℃/1 bar,the CO_(2) uptake of PAC-700 reached 6.85 and 4.64 mmol/g,respectively.Additionally,PAC-700 maintained a CO_(2) uptake retention ratio of 99%after 5 adsorption-desorption cycles and exhibited good CO_(2)/N_(2) selectivity of 22.4−51.6.These findings highlighted the advantageous CO_(2) adsorption performance of PAC-700,indicating its substantial application potential in the domain of carbon capture.展开更多
For the sake of evaluating the effect of gravity on the perfection of hydrothermal crystals,we have conducted following growth experiments on the earth:Quartz crystals were grown in both vertical and horizontal autocl...For the sake of evaluating the effect of gravity on the perfection of hydrothermal crystals,we have conducted following growth experiments on the earth:Quartz crystals were grown in both vertical and horizontal autoclaves as a contrast with each other.展开更多
Hydrothermal method was used to synthesize nanoscale particles of MnZn ferrites. The crystallites were characterized by XRD, TEM and SEM. The effects of the reaction time, temperature and additives on the product were...Hydrothermal method was used to synthesize nanoscale particles of MnZn ferrites. The crystallites were characterized by XRD, TEM and SEM. The effects of the reaction time, temperature and additives on the product were investigated. Crystallization process would be carried out above 160 ℃ for 5 h or more, higher temperature can reduce the reaction time. Additives were used to remove impurities such as Fe 2O 3, ZnMnO 3.10~15 nm pure slightly agglomerated MnZn ferrite crystallites with a narrow grain size distribution were obtained.展开更多
To reveal the influencing factors and changing rules for the hydrothermal interaction process of highway subgrade, the field measurements of Shiwei-Labudalin Highway in Inner Mongolia, China was conducted for 3 years,...To reveal the influencing factors and changing rules for the hydrothermal interaction process of highway subgrade, the field measurements of Shiwei-Labudalin Highway in Inner Mongolia, China was conducted for 3 years, based on which the freezing-thawing rules and water content changing characteristics were analyzed. The main results show the subgrade presents a frequent freezing-thawing alternation, and the water content of subgrade exhibits an obvious seasonal alternation. The subbase has the maximum water content, while the base has the minimum water content. The change of water flux is concentrated in the thawing period and consistent with the change of temperature gradient. The subbase layer has the most active water flux due to the heat absorption and impermeability of pavement that easily causes the water accumulation in this layer. Therefore, the prevention and treatment for the freezing-thawing disease should be started from heat insulation and water resistance.展开更多
CeO2 nanorods were synthesized by a hydrothermal method at 160℃ from CeC16-6H20 and NH3.H20 in the presence of an ionic liquid 1-butyl-3-methyl-imidazolium chloride ([Bmim]C1). The phase and morphology of the resul...CeO2 nanorods were synthesized by a hydrothermal method at 160℃ from CeC16-6H20 and NH3.H20 in the presence of an ionic liquid 1-butyl-3-methyl-imidazolium chloride ([Bmim]C1). The phase and morphology of the result- ing products were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM), respectively. The results reveal that morphology of CeO2 prepared in the presence of the ionic liquid is nano- rod while it changes to irregular nanoparticle without ionic liquid. The resulting nanorods are about 13-25 nm in diameter and 200-500 nm in length. With the increase of ionic concentration, nanorods were disappeared gradually and nanoparticles were obtained. Moreover, increasing the hydrothermal temperature to 180℃, nanospheres at size of 19-24 nm could be synthesized by aggregation of-2 nm nanocrystals.展开更多
A reduced graphene oxide/Ni(OH)2 composite with excellent supercapacitive performance was synthesized by a facile hydrothermal route without organic solvents or templates used.XRD and SEM results reveal that the nicke...A reduced graphene oxide/Ni(OH)2 composite with excellent supercapacitive performance was synthesized by a facile hydrothermal route without organic solvents or templates used.XRD and SEM results reveal that the nickel hydroxide,which crystallizes into hexagonal β-Ni(OH)2 nanoflakes with a diameter less than 200 nm and a thickness of about 10 nm,is well combined with the reduced graphene oxide sheets.Electrochemical performance of the synthesized composite as an electrode material was investigated by cyclic voltammetry,electrochemical impedance spectroscopy and galvanostatic charge/discharge measurements.Its specific capacitance is determined to be 1672 F/g at a scan rate of 2 mV/s,and 696 F/g at a high scan rate of 50 mV/s.After 2000 cycles at a current density of 10 A/g,the composite exhibits a specific capacitance of 969 F/g,retaining about 86% of its initial capacitance.The composite delivers a high energy density of 83.6 W·h/kg at a power density of 1.0 kW/kg.The excellent supercapacitive performance along with the easy synthesis method allows the synthesized composite to be promising for supercapacitor applications.展开更多
Well-crystallized hexagonal hematite (α-Fe2O3) platelets were synthesized by hydrothermal process, using a highly concentrated ferric hydroxide as precursor. The precursor was prepared by adding ammonia to the ferr...Well-crystallized hexagonal hematite (α-Fe2O3) platelets were synthesized by hydrothermal process, using a highly concentrated ferric hydroxide as precursor. The precursor was prepared by adding ammonia to the ferric sulfate solution which was obtained by leaching pyrite cinders with sulfuric acid. Structure and morphology of the synthesized products were investigated by X-ray diffraction, scanning electron microscope, transmission electron microscope and selected area electron diffraction. The results reveal that the reaction temperature has significant effects on the structure, size and shape of the synthesized hematite particles. Typical hexagonal hematite platelets, about 0.4-0.6 μm in diameter and 0.1 μm in thickness, were prepared at 230 ℃ for 0.5 h. Al^3+, contained in the sulfuric acid leaching solution as an impurity, plays an extremely important role in the formation of hexagonal hematite. In addition, a possible mechanism about the formation of hexagonal hematite platelets was proposed.展开更多
Hydrothermal activity from a hydrothermal circulatory system is a special geological event, it is of importance to the formation of some massive sulfide deposits (hydrothermal deposits). The Authors think that Jiama p...Hydrothermal activity from a hydrothermal circulatory system is a special geological event, it is of importance to the formation of some massive sulfide deposits (hydrothermal deposits). The Authors think that Jiama polymetallic ore deposit in Gangdise tectonic zone, Tibet is a special skarn deposit i.e. a “hydrothermal\|metasomatic skarn deposit" bound up with benthonic hydrothermal circulatory system. Its important characteristics are as follows: 1 Evolution of the Gangdise island arc in studied area may be divided into three stages Middle Jurassic volcanic arc stage; Middle—Late Jurassic and Early Cretaceous inter arc sedimentary basin stage; and Eogene magmatic arc stage. The deposit is confined to the inter arc sedimentary basin. Existing data indicate that the volcanic arc provided Jiama deposit with abundant ore\|forming material; the inter arc sedimentary basin provided Jiama deposit with absolutely necessary space; the magmatic arc created reconcentration condition for the Jiama deposit.展开更多
To meet the commercial requirements of inorganic heat insulators,the mixture of diatomite and Ca(OH)2 are evenly dispersed,mold-compacted,and then hydrothermally solidified due to the formation of tobermorite under an...To meet the commercial requirements of inorganic heat insulators,the mixture of diatomite and Ca(OH)2 are evenly dispersed,mold-compacted,and then hydrothermally solidified due to the formation of tobermorite under an autoclaved process.Systematic investigations of the preparation conditions(including mix ratio,autoclaved factors,mold pressure,etc)were carried out to optimize the serving properties of such tobermorite-based products.As a result,a compressive strength of more than 30 MPa was realized for the specimen in high density(about 1.30(g·cm-3)).On the contrary,the specimen in light weight for example 0.63(g·cm-3)typically showed a thermal conductivity of around 0.12(W·m-1·K-1).The present work developed a feasible way to produce and to control the serving properties of diatomite-based heat insulators by a process of hydrothermal solidification,in which the optimized value of Ca/Si ratio was proposed to be 0.6~0.7,while the water content is 25% in weight,and hydrothermal reaction is performed at 180 ℃ for no more than 24 hours.展开更多
In situ Raman analysis on the segregated near-equilibrium carbonate-fluid interaction at elevated temperatures(room temperature-260 °C) and pressures(13-812 MPa) in a hydrothermal diamond anvil cell(HDAC) reveals...In situ Raman analysis on the segregated near-equilibrium carbonate-fluid interaction at elevated temperatures(room temperature-260 °C) and pressures(13-812 MPa) in a hydrothermal diamond anvil cell(HDAC) reveals the preservation mechanism of porosity in deep carbonate reservoirs in the northeastern Sichuan Basin. The carbonate-fluid interaction was investigated by separately heating carbonate minerals and rocks with four different acid solutions(saturated CO2 and H2 S solutions, HCl, CH3COOH) in a sealed sample chamber. A minor continuous precipitation with increasing temperatures and pressures was observed during the experiments which caused minor sample volume change. The closed system is a preservation of pores and burial dissolution may not be the dominant diagenesis in the origin of porosity. Thin section photomicrographs observations in Changxing and Feixianguan Formations demonstrate that eogenetic pores such as moldic or intragranular pores with late small euhedral minerals, intergranular, intercrystal and biological cavity pores are the main pore types for the reservoirs. Early fast deep burial makes the porous carbonate sediments get into the closed system as soon as possible and preserves the pores created in the early diagenetic stage to make significant contribution to the deep reservoir quality. The anomalous high porosity at a given depth may come from the inheritance of primary pores and eogenetic porosity is fundamental to carbonate reservoir development. The favorable factors for deep reservoir origin include durable meteoric leaching, early fast deep burial, early dolomitization, etc. This deep pores preservation mechanism may be of great importance to the further exploration in deep carbonate reservoirs in the northeastern Sichuan Basin.展开更多
Culturable thermophilic microorganisms were enriched from samples collected from Lau Basin hydrothermal vents in artificial seawater medium at 45 ℃ and pH 7.0. Microbial diversities of the enriched communities were d...Culturable thermophilic microorganisms were enriched from samples collected from Lau Basin hydrothermal vents in artificial seawater medium at 45 ℃ and pH 7.0. Microbial diversities of the enriched communities were defined by performing a restriction fragment length polymorphism (RFLP) analysis of 16S rRNA gene sequences with enzymes MspI and Hin6 I. A total of 14 phylotypes have been detected by the RFLP patterns identified for 16S rRNA clone libraries of the enrichment. Analysis of sequences showed that at least four bacterial divisions presented in the clones libraries. The phyla Proteobacteria and Firmicutes were the most dominant groups. The majority of the sequences included in this analysis affiliated with Gamma Proteobacteria (71%) and Bacillus (23%). Scanning electron micrographs revealed that there were abundant rod and coceoidal forms encased in sulphur and sodium chloride precipitate. These results revealed that there were a diversity of moderate thermophilic bacterial populations thrived in Lau Basin hydrothermal vents that were previously not detected by either molecular retrieval or strain purification techniques.展开更多
Mesoporous cerium-zirconium mixed oxides were prepared by hydrothermal method using cetyl trimethyl ammonium bromide (CTAB) as template. The effects of amount of template, pH value of solution and hydrothermal tempera...Mesoporous cerium-zirconium mixed oxides were prepared by hydrothermal method using cetyl trimethyl ammonium bromide (CTAB) as template. The effects of amount of template, pH value of solution and hydrothermal temperature on mesostructure of samples were systematically investigated. The final products were characterized by XRD, TEM, FT-IR, and BET. The results indicate that all the cerium-zirconium mixed oxides present a meso-structure. At molar ratio of n(CTAB)/n((Ce)+(Zr))= 0.15, pH value of 9, and hydrothermal temperature of 120 ℃, the samples obtained possess a specific surface area of 207.9 m2/g with pore diameter of 3.70 nm and pore volume of 0.19 cm3/g.展开更多
Properties of hydroxyapatite (HA, Ca10(PO4)6(OH)2), including bioactivity, biocompatibility, solubility and adsorption could be tailored over wide ranges by the control of particle composition, particle size and...Properties of hydroxyapatite (HA, Ca10(PO4)6(OH)2), including bioactivity, biocompatibility, solubility and adsorption could be tailored over wide ranges by the control of particle composition, particle size and morphology. In order to satisfy various applications, well-crystallized pure HA nanoparticles were synthesized at moderate temperatures by hydrotherrnal synthesis, and HA nanoparticles with different lengths were obtained by adding organic additives. X-ray diffractometry (XRD) and Fourier transform infrared (FTIR) spectrometry were used to characterize these nanoparticles, and the morphologies of the HA particles were observed by transmission electron microscopy (TEM). The results demonstrate that shorter rod-like HA particles can be prepared by adding cetyltrimethylammonium bromide (CTAB), as the additive of CTAB can block the HA crystal growth along with c-axis. And whisker HA particles are obtained by adding ethylenediamine tetraacetic acid (EDTA), since EDTA may have effect on the dissolution-repreeipitation process of HA.展开更多
Ultrafine cube-shape Ce2Sn2O7 nanoparticles crystallized in pure pyrochlore phase with a size of about 10 nm have been successfully synthesized by a facile hydrothermal method.Conditional experiments have been conduct...Ultrafine cube-shape Ce2Sn2O7 nanoparticles crystallized in pure pyrochlore phase with a size of about 10 nm have been successfully synthesized by a facile hydrothermal method.Conditional experiments have been conducted to optimize the processing parameters including temperature,pH,reaction duration,precipitator types to obtain phase-pure Ce2Sn2O7.The crystal structure,morphology and sizes and specific surface area have been characterized by X-ray diffractometer(XRD),Raman spectrum,transmission electron microscope(TEM),high resolution transmission electron microscope(HRTEM),and Brunauer-Emmett-Teller(BET).The as-synthesized Ce2Sn2O7 ultrafine nanocubes have been evaluated as electrode materials for pseudo-capacitors and lithium ion batteries.When testing as supercapacitors,a high specific capacitance of 222 F/g at 0.1 A/g and a good cycling stability with a capacitance retention of higher than 86%after 5000 cycle have been achieved.When targeted for anode material for lithium ion batteries,the nanocubes deliver a high specific reversible capacity of more than 900 mA·h/g at 0.05C rate.The rate capability and cycling performance is also very promising as compared with the traditional graphite anode.展开更多
Kaolinite was hydrothermally synthesized from alumina gel and silicate by dissolving alumina gel in oxalic acid before it was mixed with silicate, effects of the amount of addition on the species of synthetic products...Kaolinite was hydrothermally synthesized from alumina gel and silicate by dissolving alumina gel in oxalic acid before it was mixed with silicate, effects of the amount of addition on the species of synthetic products were discussed. The reaction product was characterized by X ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that analcite is the only phase of the reaction solution without oxalic acid, the proportion of kaolinite in product increases with the amount of addition, and kaolinite is the main species when the molar ratio of oxalic acid to alumina reaches 0.6∶1.0. This is because oxalic acid addition is beneficial to the formation of kaolinite through changing the coordination number of aluminium from four to six, while the mixture of alumina gel, before it was dissolved in oxalic acid with silicate interfered with the crystallization of kaolinite.展开更多
Hollow-structured Cu_(0.3)Co_(2.7)O_(4) microspheres have been synthesized by a simple one-pot template-free hydrothermal method with copper sulfate,cobalt acetate and ammonia as raw materials.The products were charac...Hollow-structured Cu_(0.3)Co_(2.7)O_(4) microspheres have been synthesized by a simple one-pot template-free hydrothermal method with copper sulfate,cobalt acetate and ammonia as raw materials.The products were characterized by powder X-ray diffraction,energy dispersive X-ray analysis,selected area electron diffraction,high-resolution transmission electron microscopy,scanning electron microscopy and BET measurements.The research results show that the hollow Cu_(0.3)Co_(2.7)O_(4) microspheres consist of single-crystalline nanocubes with the diameter of about 20 nm.The formation mechanism of hollow Cu_(0.3)Co_(2.7)O_(4) microspheres is suggested as Ostwald ripening in a solid-solution-solid process,and Cu_(0.3)Co_(2.7)O_(4) microspheres are mesoporous containing two pore sizes of 3.3 and 5.9 nm.The as-prepared Cu_(0.3)Co_(2.7)O_(4) sensors have optimal gas responses to 50×10^(−6) mg/m^(3) C_(2)H_(5)OH at 190℃.展开更多
Silver-tin oxide powders were synthesized by the hydrothermal method with Ag(NH_3)_2^+ solution and Na_2SnO_3 solution as raw materials and Na_2SO_3 as reductant. The precipitation conditions of Na2SnO3 solution and t...Silver-tin oxide powders were synthesized by the hydrothermal method with Ag(NH_3)_2^+ solution and Na_2SnO_3 solution as raw materials and Na_2SO_3 as reductant. The precipitation conditions of Na2SnO3 solution and the reduction conditions of Ag(NH_3)_2^+ were also investigated. The powders prepared were characterized by differential thermal analysis (DTA), X-ray diffraction analysis (XRD), scanning electron microscope (SEM) and energy spectrum analysis. The results show that pH value of the solution is a key parameter in the formation of Sn(OH)_4 precipitate and the reduction reaction of Ag(NH_3)_2^+ can release H+ ions, which results in synchronous precipitation of Sn(OH)_6~2- as Sn(OH)_4. The reduction of Ag(NH_3)_2^+ and precipitation of Na_2SnO_3 occur simultaneously and the coprecipitation of silver and tin oxide is reached by the hydrothermal method. The silver-tin oxide composite powders have mainly flake shape of about 0.3 μm in thickness and there exists homogeneous distribution of tin oxide and silver in the powder synthesized.展开更多
文摘ZnO is a highly significant II-VI semiconductor known for its excellent optoelectronic properties,making it widely applicable and promising for use in light-emitting devices,solar cells,lasers,and photodetectors.The methods for preparing ZnO are diverse,and among them,the hydrothermal method is favored for its simplicity,ease of operation,and low cost,making it an optimal choice for ZnO single-crystal growth.Most studies investigating the effects of different hydrothermal experimental parameters on the morphology and performance of ZnO nano-materials typically focus on only 2—3 variable parameters,with few examining the impact of all possible experimental parameter changes on ZnO nano-mate-rials.The principles of the hydrothermal method and its advantages in nano-material preparation were briefly introduced in this article.The detailed discussion on the influence of various experimental parameters on the preparation of ZnO nano-materials was provided,which including reaction materials,Zn^(2+)/OH^(-)ratio,reaction time and temperature,additives,experimental equipment,and annealing conditions.The review co-vers how different experimental parameters affect the morphology and performance of the materials,as well as how different rare earth doping elements influence the performance of ZnO nano-materials.It is hoped that this work will contribute to future research on the hydrothermal synthesis of nano-materials.
基金National Key Research and Development Program of China(2022YFB3708500,2023YFB3611000)Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(2020ZZ109)。
文摘Currently,the carbothermal reduction-nitridation(CRN)process is the predominant method for preparing aluminum nitride(AlN)powder.Although AlN powder prepared by CRN process exhibits high purity and excellent sintering activity,it also presents challenges such as the necessity for high reaction temperatures and difficulties in achieving uniform mixing of its raw materials.This study presents a comprehensive investigation into preparation process of AlN nanopowders using a combination of hydrothermal synthesis and CRN.In the hydrothermal reaction,a homogeneous composite precursor consisting of carbon and boehmite(γ-AlOOH)is synthesized at 200℃using aluminum nitrate as the aluminum source,sucrose as the carbon source,and urea as the precipitant.During the hydrothermal process,the precursor develops a core-shell structure,with boehmite tightly coated with carbon(γ-AlOOH@C)due to electrostatic attraction.Compared with conventional precursor,the hydrothermal hybrid offers many advantages,such as ultrafine particles,uniform particle size distribution,good dispersion,high reactivity,and environmental friendliness.The carbon shell enhances thermodynamic stability of γ-Al_(2)O_(3) compared to the corundum phase(α-Al_(2)O_(3))by preventing the loss of the surface area in alumina.This stability enables γ-Al_(2)O_(3) to maintain high reactivity during CRN process,which initiates at 1300℃,and concludes at 1400℃.The underlying mechanisms are substantiated through experiments and thermodynamic calculations.This research provides a robust theoretical and experimental foundation for the hydrothermal combined carbothermal preparation of non-oxide ceramic nanopowders.
基金supported by the National Natural Science Foundation of China(22168032)the National Key Research and Development Program of China(2023YFC3904302,2023YFB4103500)the Key Projects of Ning Dong Energy and Chemical Industry Base(2023NDKJXMLX022).
文摘A new adsorbent was successfully prepared by hydrothermal treatment and chemical activation through coal gasification fine slag(CGFS)and blue algae(BA)as raw materials and used for CO_(2)capture.The CO_(2)chemisorption capacity of the adsorbent was further enhanced by taking advantage of the nitrogenous bases contained in the BA.In the hydrothermal process,the addition of BA significantly increased the content of pyrrole nitrogen in the adsorbent.In the activation process,pyrrole nitrogen gradually changed into pyridine nitrogen and graphite nitrogen.Increased BA addition result in a higher specific surface area and microporosity of the adsorbent.The CO_(2)adsorption performance test proved that the CGFS-50%-CA sample has the strongest CO_(2)adsorption capacity at low temperature,up to 15.59 cm^(3)/g,which is mainly through physical adsorption,and the CGFS-10%-CA sample has the strongest CO_(2)adsorption capacity at high temperature,up to 7.31 cm^(3)/g,which is mainly through chemical adsorption.CO_(2)uptake of the CGFS-10%-CA sample was well maintained after 10 cycles,with regeneration efficiencies above 99%.The results indicate that the novel adsorbents with coexistence of physical and chemical adsorption have great potential for CO_(2)adsorption applications.
基金supported by the National Key R&D Program(2022YFC3902403)Fundamental Research Funds for the Central Universities(2024JC001,2019JG002)Technology Innovation Special Fund of Jiangsu Province for Carbon Dioxide Emission Peaking and Carbon Neutrality(BE2022307)。
文摘To optimize the CO_(2) adsorption performance of carbon materials,this study proposed a preparation method for biomass-based porous carbon through hydrothermal carbonization coupled with nitrogen source optimization and K_(2)CO_(3) activation.The effects of different nitrogen sources(urea,piperazine,melamine,and polyaniline)and activation temperatures on the physicochemical features and CO_(2) adsorption characteristics of the porous carbons were systematically investigated.The results indicated that different nitrogen sources showed varying impacts on the CO_(2) uptake of porous carbons,and not all nitrogen sources enhanced the adsorption performance.The urea and piperazine doped porous carbons exhibited relatively low nitrogen contents and specific surface areas.Whereas the melamine doped carbons showed higher nitrogen contents and specific surface areas,but lacked narrow micropores,limiting their CO_(2) adsorption performance.In contrast,PAC-700,prepared using polyaniline as nitrogen source,featured a well-developed pore structure,abundant narrow micropores and pyrrolic-N groups,endowing it with enhanced CO_(2) adsorption capability.At 0℃/1 bar and 25℃/1 bar,the CO_(2) uptake of PAC-700 reached 6.85 and 4.64 mmol/g,respectively.Additionally,PAC-700 maintained a CO_(2) uptake retention ratio of 99%after 5 adsorption-desorption cycles and exhibited good CO_(2)/N_(2) selectivity of 22.4−51.6.These findings highlighted the advantageous CO_(2) adsorption performance of PAC-700,indicating its substantial application potential in the domain of carbon capture.
文摘For the sake of evaluating the effect of gravity on the perfection of hydrothermal crystals,we have conducted following growth experiments on the earth:Quartz crystals were grown in both vertical and horizontal autoclaves as a contrast with each other.
文摘Hydrothermal method was used to synthesize nanoscale particles of MnZn ferrites. The crystallites were characterized by XRD, TEM and SEM. The effects of the reaction time, temperature and additives on the product were investigated. Crystallization process would be carried out above 160 ℃ for 5 h or more, higher temperature can reduce the reaction time. Additives were used to remove impurities such as Fe 2O 3, ZnMnO 3.10~15 nm pure slightly agglomerated MnZn ferrite crystallites with a narrow grain size distribution were obtained.
基金Project(2018-MSI-018) supported by the Key Science and Technology Project of the Ministry of Transport of ChinaProject(NJ-2018-28) supported by the Construction Science and Technology of the Department of Transport of Inner Mongolia Autonomous Region of China+2 种基金Project(2019MS05029) supported by the Natural Science Fund Project of Inner Mongolia Autonomous Region of ChinaProject(2020MS05077) supported by the Natural Science Fund Project of Inner Mongolia Autonomous Region of ChinaProject(NJ-2020-05) supported by the Research on Complete Survey Technology of Highway Road Area in High-latitude Permafrost Region, China。
文摘To reveal the influencing factors and changing rules for the hydrothermal interaction process of highway subgrade, the field measurements of Shiwei-Labudalin Highway in Inner Mongolia, China was conducted for 3 years, based on which the freezing-thawing rules and water content changing characteristics were analyzed. The main results show the subgrade presents a frequent freezing-thawing alternation, and the water content of subgrade exhibits an obvious seasonal alternation. The subbase has the maximum water content, while the base has the minimum water content. The change of water flux is concentrated in the thawing period and consistent with the change of temperature gradient. The subbase layer has the most active water flux due to the heat absorption and impermeability of pavement that easily causes the water accumulation in this layer. Therefore, the prevention and treatment for the freezing-thawing disease should be started from heat insulation and water resistance.
文摘CeO2 nanorods were synthesized by a hydrothermal method at 160℃ from CeC16-6H20 and NH3.H20 in the presence of an ionic liquid 1-butyl-3-methyl-imidazolium chloride ([Bmim]C1). The phase and morphology of the result- ing products were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM), respectively. The results reveal that morphology of CeO2 prepared in the presence of the ionic liquid is nano- rod while it changes to irregular nanoparticle without ionic liquid. The resulting nanorods are about 13-25 nm in diameter and 200-500 nm in length. With the increase of ionic concentration, nanorods were disappeared gradually and nanoparticles were obtained. Moreover, increasing the hydrothermal temperature to 180℃, nanospheres at size of 19-24 nm could be synthesized by aggregation of-2 nm nanocrystals.
基金Project(KJ2012A045) supported by the Natural Science Foundation of Education Commission of Anhui Province,China
文摘A reduced graphene oxide/Ni(OH)2 composite with excellent supercapacitive performance was synthesized by a facile hydrothermal route without organic solvents or templates used.XRD and SEM results reveal that the nickel hydroxide,which crystallizes into hexagonal β-Ni(OH)2 nanoflakes with a diameter less than 200 nm and a thickness of about 10 nm,is well combined with the reduced graphene oxide sheets.Electrochemical performance of the synthesized composite as an electrode material was investigated by cyclic voltammetry,electrochemical impedance spectroscopy and galvanostatic charge/discharge measurements.Its specific capacitance is determined to be 1672 F/g at a scan rate of 2 mV/s,and 696 F/g at a high scan rate of 50 mV/s.After 2000 cycles at a current density of 10 A/g,the composite exhibits a specific capacitance of 969 F/g,retaining about 86% of its initial capacitance.The composite delivers a high energy density of 83.6 W·h/kg at a power density of 1.0 kW/kg.The excellent supercapacitive performance along with the easy synthesis method allows the synthesized composite to be promising for supercapacitor applications.
基金Project(2008A090300016) supported by the Key Science and Technology Item of Guangdong Province,ChinaProject(ZKJ2010022) supported by the Precious Apparatus Opening Center Foundation of Central South University,China
文摘Well-crystallized hexagonal hematite (α-Fe2O3) platelets were synthesized by hydrothermal process, using a highly concentrated ferric hydroxide as precursor. The precursor was prepared by adding ammonia to the ferric sulfate solution which was obtained by leaching pyrite cinders with sulfuric acid. Structure and morphology of the synthesized products were investigated by X-ray diffraction, scanning electron microscope, transmission electron microscope and selected area electron diffraction. The results reveal that the reaction temperature has significant effects on the structure, size and shape of the synthesized hematite particles. Typical hexagonal hematite platelets, about 0.4-0.6 μm in diameter and 0.1 μm in thickness, were prepared at 230 ℃ for 0.5 h. Al^3+, contained in the sulfuric acid leaching solution as an impurity, plays an extremely important role in the formation of hexagonal hematite. In addition, a possible mechanism about the formation of hexagonal hematite platelets was proposed.
文摘Hydrothermal activity from a hydrothermal circulatory system is a special geological event, it is of importance to the formation of some massive sulfide deposits (hydrothermal deposits). The Authors think that Jiama polymetallic ore deposit in Gangdise tectonic zone, Tibet is a special skarn deposit i.e. a “hydrothermal\|metasomatic skarn deposit" bound up with benthonic hydrothermal circulatory system. Its important characteristics are as follows: 1 Evolution of the Gangdise island arc in studied area may be divided into three stages Middle Jurassic volcanic arc stage; Middle—Late Jurassic and Early Cretaceous inter arc sedimentary basin stage; and Eogene magmatic arc stage. The deposit is confined to the inter arc sedimentary basin. Existing data indicate that the volcanic arc provided Jiama deposit with abundant ore\|forming material; the inter arc sedimentary basin provided Jiama deposit with absolutely necessary space; the magmatic arc created reconcentration condition for the Jiama deposit.
文摘To meet the commercial requirements of inorganic heat insulators,the mixture of diatomite and Ca(OH)2 are evenly dispersed,mold-compacted,and then hydrothermally solidified due to the formation of tobermorite under an autoclaved process.Systematic investigations of the preparation conditions(including mix ratio,autoclaved factors,mold pressure,etc)were carried out to optimize the serving properties of such tobermorite-based products.As a result,a compressive strength of more than 30 MPa was realized for the specimen in high density(about 1.30(g·cm-3)).On the contrary,the specimen in light weight for example 0.63(g·cm-3)typically showed a thermal conductivity of around 0.12(W·m-1·K-1).The present work developed a feasible way to produce and to control the serving properties of diatomite-based heat insulators by a process of hydrothermal solidification,in which the optimized value of Ca/Si ratio was proposed to be 0.6~0.7,while the water content is 25% in weight,and hydrothermal reaction is performed at 180 ℃ for no more than 24 hours.
基金Project(2011ZX05005-003-010HZ)supported by the National Science and Technology Major Project,ChinaProjects(41272137,41002029)supported by the National Natural Science Foundation of China
文摘In situ Raman analysis on the segregated near-equilibrium carbonate-fluid interaction at elevated temperatures(room temperature-260 °C) and pressures(13-812 MPa) in a hydrothermal diamond anvil cell(HDAC) reveals the preservation mechanism of porosity in deep carbonate reservoirs in the northeastern Sichuan Basin. The carbonate-fluid interaction was investigated by separately heating carbonate minerals and rocks with four different acid solutions(saturated CO2 and H2 S solutions, HCl, CH3COOH) in a sealed sample chamber. A minor continuous precipitation with increasing temperatures and pressures was observed during the experiments which caused minor sample volume change. The closed system is a preservation of pores and burial dissolution may not be the dominant diagenesis in the origin of porosity. Thin section photomicrographs observations in Changxing and Feixianguan Formations demonstrate that eogenetic pores such as moldic or intragranular pores with late small euhedral minerals, intergranular, intercrystal and biological cavity pores are the main pore types for the reservoirs. Early fast deep burial makes the porous carbonate sediments get into the closed system as soon as possible and preserves the pores created in the early diagenetic stage to make significant contribution to the deep reservoir quality. The anomalous high porosity at a given depth may come from the inheritance of primary pores and eogenetic porosity is fundamental to carbonate reservoir development. The favorable factors for deep reservoir origin include durable meteoric leaching, early fast deep burial, early dolomitization, etc. This deep pores preservation mechanism may be of great importance to the further exploration in deep carbonate reservoirs in the northeastern Sichuan Basin.
基金Project(200805032) supported by Grands from Scientific Research Program of Marine Public Welfare Industry of ChinaProject (DYXM-115-02-2-07) supported by China Ocean Mineral Resources R&D Association (COMRA)
文摘Culturable thermophilic microorganisms were enriched from samples collected from Lau Basin hydrothermal vents in artificial seawater medium at 45 ℃ and pH 7.0. Microbial diversities of the enriched communities were defined by performing a restriction fragment length polymorphism (RFLP) analysis of 16S rRNA gene sequences with enzymes MspI and Hin6 I. A total of 14 phylotypes have been detected by the RFLP patterns identified for 16S rRNA clone libraries of the enrichment. Analysis of sequences showed that at least four bacterial divisions presented in the clones libraries. The phyla Proteobacteria and Firmicutes were the most dominant groups. The majority of the sequences included in this analysis affiliated with Gamma Proteobacteria (71%) and Bacillus (23%). Scanning electron micrographs revealed that there were abundant rod and coceoidal forms encased in sulphur and sodium chloride precipitate. These results revealed that there were a diversity of moderate thermophilic bacterial populations thrived in Lau Basin hydrothermal vents that were previously not detected by either molecular retrieval or strain purification techniques.
基金Project(CHCL0501) supported by Hubei Provincial Open Fund of Key Laboratory of Catalytic Material Science and Technology
文摘Mesoporous cerium-zirconium mixed oxides were prepared by hydrothermal method using cetyl trimethyl ammonium bromide (CTAB) as template. The effects of amount of template, pH value of solution and hydrothermal temperature on mesostructure of samples were systematically investigated. The final products were characterized by XRD, TEM, FT-IR, and BET. The results indicate that all the cerium-zirconium mixed oxides present a meso-structure. At molar ratio of n(CTAB)/n((Ce)+(Zr))= 0.15, pH value of 9, and hydrothermal temperature of 120 ℃, the samples obtained possess a specific surface area of 207.9 m2/g with pore diameter of 3.70 nm and pore volume of 0.19 cm3/g.
基金Project(20070410304) supported by Postdoctoral Foundation of ChinaProject(07JJ3105) supported by Hunan Provincial Natural Science Foundation of China
文摘Properties of hydroxyapatite (HA, Ca10(PO4)6(OH)2), including bioactivity, biocompatibility, solubility and adsorption could be tailored over wide ranges by the control of particle composition, particle size and morphology. In order to satisfy various applications, well-crystallized pure HA nanoparticles were synthesized at moderate temperatures by hydrotherrnal synthesis, and HA nanoparticles with different lengths were obtained by adding organic additives. X-ray diffractometry (XRD) and Fourier transform infrared (FTIR) spectrometry were used to characterize these nanoparticles, and the morphologies of the HA particles were observed by transmission electron microscopy (TEM). The results demonstrate that shorter rod-like HA particles can be prepared by adding cetyltrimethylammonium bromide (CTAB), as the additive of CTAB can block the HA crystal growth along with c-axis. And whisker HA particles are obtained by adding ethylenediamine tetraacetic acid (EDTA), since EDTA may have effect on the dissolution-repreeipitation process of HA.
基金Project(JCYJ20170817110251498)supported by the Basic Research Project of the Science and Technology Innovation Commission of Shenzhen,ChinaProject(2016TQ03C919)supported by the Guangdong Special Support for the Science and Technology Leading Young Scientist,ChinaProjects(21603094,21703096)supported by the National Natural Science Foundation of China
文摘Ultrafine cube-shape Ce2Sn2O7 nanoparticles crystallized in pure pyrochlore phase with a size of about 10 nm have been successfully synthesized by a facile hydrothermal method.Conditional experiments have been conducted to optimize the processing parameters including temperature,pH,reaction duration,precipitator types to obtain phase-pure Ce2Sn2O7.The crystal structure,morphology and sizes and specific surface area have been characterized by X-ray diffractometer(XRD),Raman spectrum,transmission electron microscope(TEM),high resolution transmission electron microscope(HRTEM),and Brunauer-Emmett-Teller(BET).The as-synthesized Ce2Sn2O7 ultrafine nanocubes have been evaluated as electrode materials for pseudo-capacitors and lithium ion batteries.When testing as supercapacitors,a high specific capacitance of 222 F/g at 0.1 A/g and a good cycling stability with a capacitance retention of higher than 86%after 5000 cycle have been achieved.When targeted for anode material for lithium ion batteries,the nanocubes deliver a high specific reversible capacity of more than 900 mA·h/g at 0.05C rate.The rate capability and cycling performance is also very promising as compared with the traditional graphite anode.
文摘Kaolinite was hydrothermally synthesized from alumina gel and silicate by dissolving alumina gel in oxalic acid before it was mixed with silicate, effects of the amount of addition on the species of synthetic products were discussed. The reaction product was characterized by X ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that analcite is the only phase of the reaction solution without oxalic acid, the proportion of kaolinite in product increases with the amount of addition, and kaolinite is the main species when the molar ratio of oxalic acid to alumina reaches 0.6∶1.0. This is because oxalic acid addition is beneficial to the formation of kaolinite through changing the coordination number of aluminium from four to six, while the mixture of alumina gel, before it was dissolved in oxalic acid with silicate interfered with the crystallization of kaolinite.
基金Project(51202066)supported by the National Natural Science Foundation of ChinaProject(NCET-13-0784)supported by the Program for New Century Excellent Talents in University of China。
文摘Hollow-structured Cu_(0.3)Co_(2.7)O_(4) microspheres have been synthesized by a simple one-pot template-free hydrothermal method with copper sulfate,cobalt acetate and ammonia as raw materials.The products were characterized by powder X-ray diffraction,energy dispersive X-ray analysis,selected area electron diffraction,high-resolution transmission electron microscopy,scanning electron microscopy and BET measurements.The research results show that the hollow Cu_(0.3)Co_(2.7)O_(4) microspheres consist of single-crystalline nanocubes with the diameter of about 20 nm.The formation mechanism of hollow Cu_(0.3)Co_(2.7)O_(4) microspheres is suggested as Ostwald ripening in a solid-solution-solid process,and Cu_(0.3)Co_(2.7)O_(4) microspheres are mesoporous containing two pore sizes of 3.3 and 5.9 nm.The as-prepared Cu_(0.3)Co_(2.7)O_(4) sensors have optimal gas responses to 50×10^(−6) mg/m^(3) C_(2)H_(5)OH at 190℃.
基金Project(2001BA901A09)supported by the Key Program of Science and Technology Action of West China Development
文摘Silver-tin oxide powders were synthesized by the hydrothermal method with Ag(NH_3)_2^+ solution and Na_2SnO_3 solution as raw materials and Na_2SO_3 as reductant. The precipitation conditions of Na2SnO3 solution and the reduction conditions of Ag(NH_3)_2^+ were also investigated. The powders prepared were characterized by differential thermal analysis (DTA), X-ray diffraction analysis (XRD), scanning electron microscope (SEM) and energy spectrum analysis. The results show that pH value of the solution is a key parameter in the formation of Sn(OH)_4 precipitate and the reduction reaction of Ag(NH_3)_2^+ can release H+ ions, which results in synchronous precipitation of Sn(OH)_6~2- as Sn(OH)_4. The reduction of Ag(NH_3)_2^+ and precipitation of Na_2SnO_3 occur simultaneously and the coprecipitation of silver and tin oxide is reached by the hydrothermal method. The silver-tin oxide composite powders have mainly flake shape of about 0.3 μm in thickness and there exists homogeneous distribution of tin oxide and silver in the powder synthesized.