In this paper,a type of reinforcing structure for composite shell with single and through hole is presented.The experimental tests for the composite shells without hole,with single hole and reinforced structure,with t...In this paper,a type of reinforcing structure for composite shell with single and through hole is presented.The experimental tests for the composite shells without hole,with single hole and reinforced structure,with through hole and reinforced structure subjected to hydrostatic pressure were carried out by the designed experimental test system.The mechanical responses of the composite shells under hydrostatic pressure are obtained by the high-speed camera and strain measurement.The results show that the entire deformation process of the shell can be divided into three:uniform compression,"buckling mode formation"and buckling.The"buckling mode formation"process is captured and reported for the first time.For the composite shell with single hole,the proposed reinforcing structure has a significant reinforcement effect on the shell and the buckling capacity of the shell is not weaker than the complete composite shell.For the composite shell with through hole,sealing effect can be achieved by the proposed reinforcing structure,but the buckling capacity of the shell after reinforcement can only reach 77%of the original buckling capacity.展开更多
In heavy duty machine tools, hydrostatic turntable is often used as a means for providing rotational motion and supporting workpiece, so the accuracy of turntable is crucial for part machining. In order to analyze the...In heavy duty machine tools, hydrostatic turntable is often used as a means for providing rotational motion and supporting workpiece, so the accuracy of turntable is crucial for part machining. In order to analyze the influence of load-indcued errors on machining accuracy, an identification model of load-induced errors based on the deformation caused by applied load of hydrostatic turntable of computerized numerical control(CNC) gantry milling heavy machine is proposed. Based on multi-body system theory and screw theory, the space machining accuracy model of heavy duty machine tool is established with consideration of identified load-induced errors. And then, the influence of load-induced errors on space machining accuracy and the roundness error of a milled hole is analyzed. The analysis results show that load-induced errors have a big influence on the roundness error of machined hole, especially when the center of the milled hole is far from that of hydrostatic turntable.展开更多
Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fl...Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fluid dynamics(CFD)method are both employed by this new model,and thermal effects are also considered.Hydrostatic turntable systems with a series of oil supply pressures,various oil recess depth and several surface roughness parameters are studied.Performance parameters,such as turntable displacement,system flow rate,temperature rise of lubrication,stiffness and damping coefficients,are derived from different working parameters(rotational speed of turntable and exerted external load)of the hydrostatic turntable.Numerical results obtained from this FSI-thermal model are presented and discussed,and theoretical predictions are in good agreement with the experimental data.Therefore,this developed model is a very useful tool for studying hydrostatic turntables.The calculation results show that in order to obtain better performance,a rational selection of the design parameters is essential.展开更多
The initial geometric imperfection is one of the primary factors affecting the buckling behaviors of composite cylindrical shells under hydrostatic pressure.In this study,ovality and thickness variations as two repres...The initial geometric imperfection is one of the primary factors affecting the buckling behaviors of composite cylindrical shells under hydrostatic pressure.In this study,ovality and thickness variations as two representative types of the geometric imperfections are considered.After measuring the geometric imperfections,a typical carbon fiber reinforced polymers(CFRP)cylindrical shell is tested to obtain the buckling pressure.The buckling behaviors of the shell sample are analyzed in combination with the strain responses.By using the nonlinear numerical analysis,the buckling shapes of the CFRP cylinder shells with different combinations of ovality and thickness variation are firstly discussed.The rules of influence of such imperfections on the buckling pressure are then obtained by nonlinear regression method.Finally,an empirical formula is proposed to predict the buckling pressure of the composite cylinder shells,and the calculated results from the formula are in good agreement with the numerical results.展开更多
Based on the application of the four-oil-pad radial hydrostatic bearing in heavy equipments, the deformation of the four-oil-pad radial hydrostatic bearing was calculated by using the finite element method. The formul...Based on the application of the four-oil-pad radial hydrostatic bearing in heavy equipments, the deformation of the four-oil-pad radial hydrostatic bearing was calculated by using the finite element method. The formula of film stiffness, film thickness and carrying capacity were established; the influence of the main parameters, such as load, load area and deformation on the supportability was analyzed; and the capacity of the two kinds of bearings was compared. The result shows that the carrying capacity of typeⅠ is prior to that of type Ⅱ . Calculations provide a theoretical basis for the bearing choosing and structure designing in the actual project.展开更多
A controllable hydrostatic thrust bearing was presented to improve rigidity. The bearing worktable poses were controlled by coupling oilfilm thickness of four controllable chambers. The chamber flow can be regulated b...A controllable hydrostatic thrust bearing was presented to improve rigidity. The bearing worktable poses were controlled by coupling oilfilm thickness of four controllable chambers. The chamber flow can be regulated by electro hydraulic servo valve-control variable pump according to the surface roughness, load, cutting force, and thermal effects of worktable. The mathematical models of the controllable chamber flow, servo variable mechanism and controller were built. The pose control model was established, which contained the kinematics positive and negative solution and control strategy of feedforward and hydraulic cylinder position feedback. Hardware-in-loop simulation experiment was carried out on the electro hydraulic servo test bench by means of the non-linear relation of film thickness and hydraulic cylinder displacement. Hardware-in-loop simulation experiment results show that the controllable bearings exhibit high oilfilm rigidity, the rising time is 0.24 s and the maximum overshoot is 2.23%, and can be applied in high precision heavy machine tool.展开更多
In view of the axial force produced in the working process of double arc helical gear hydraulic pump,the theory of differential equation of curve and curved surface was utilized so that the calculation formula of axia...In view of the axial force produced in the working process of double arc helical gear hydraulic pump,the theory of differential equation of curve and curved surface was utilized so that the calculation formula of axial force was obtained and the relationship between the axial force and structure parameters of gears was clarified.In order to balance the axial force,the pressure oil in the high pressure area was introduced into the end face of the plunger to press the plunger against the gear shaft,and the hydrostatic bearing whose type is plunger at the end of the shaft was designed.In order to verify the balance effect of axial force,the leakage owing to end clearance and volume efficiency of gear hydraulic pump before and after the balancing process was analyzed.This paper provides a new analysis idea and balance scheme for the axial force produced in the working process of the double arc helical gear hydraulic pump,which can reduce the leakage owing to end clearance caused by the axial force and improve the volume efficiency of the gear hydraulic pump.展开更多
The Al and La elements are added to the Sn9Zn alloy to obtain the fusible alloy for the mitigation devices of solid propellant rocket motors. Differential scanning calorimetry(DSC), metallographic analysis,scanning el...The Al and La elements are added to the Sn9Zn alloy to obtain the fusible alloy for the mitigation devices of solid propellant rocket motors. Differential scanning calorimetry(DSC), metallographic analysis,scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), tensile testing and fracture analysis were used to study the effect of Al and La elements on the microstructure, melting characteristics, and mechanical properties of the Sn9Zn alloy. Whether the fusible diaphragm can effectively relieve pressure was investigated by the hydrostatic pressure at high-temperature test. Experimental results show that the melting point of the Sn9Zn-0.8Al0·2La and Sn9Zn-3Al0·2La fusible alloys can meet the predetermined working temperature of ventilation. The mechanical properties of those are more than 35% higher than that of the Sn9Zn alloy at-50°C-70°C, and the mechanical strength is reduced by 80% at 175°C. It is proven by the hydrostatic pressure at high-temperature test that the fusible diaphragm can relieve pressure effectively and can be used for the design of the mitigation devices of solid propellant rocket motors.展开更多
Erythrocyte tropomodulin(E-Tmod)is a capping protein at the slow-growing end of the actin filaments and regulates the length of the junctional complex in the erythrocyte membrane skeleton<sup>[1]</sup>.E...Erythrocyte tropomodulin(E-Tmod)is a capping protein at the slow-growing end of the actin filaments and regulates the length of the junctional complex in the erythrocyte membrane skeleton<sup>[1]</sup>.E-Tmod has two alternative promoters,P<sub>E0</sub>,and P<sub>E1</sub>,upstream of exons EO and E1,respectively.They drive the expression of two E-Tmod isoforms,E-Tmod41 and ETmod29,which play different yet coordinated roles in cytoskeleton reorganization<sup>[2]</sup>.This study aimed at investigating the expessions of the two E-Tmod isoforms response to the mechanical stresses,i.e.,shear stress and hydrostatic pressure.A cone-plate flow system and a hydrostatic pressure device were developed.Murine erythroleukemia(MEL)cells were subjected展开更多
基金supported by the Ningbo Major Research and Development Plan Project(Grant No.2024Z135)the Natural Science Basic Research Program of Shaanxi Province(Grant No.2024JC-YBMS-322)+1 种基金China Postdoctoral Science Foundation(Grant No.2020M673492)National Natural Science Foundation of China(Grant No.51909219)。
文摘In this paper,a type of reinforcing structure for composite shell with single and through hole is presented.The experimental tests for the composite shells without hole,with single hole and reinforced structure,with through hole and reinforced structure subjected to hydrostatic pressure were carried out by the designed experimental test system.The mechanical responses of the composite shells under hydrostatic pressure are obtained by the high-speed camera and strain measurement.The results show that the entire deformation process of the shell can be divided into three:uniform compression,"buckling mode formation"and buckling.The"buckling mode formation"process is captured and reported for the first time.For the composite shell with single hole,the proposed reinforcing structure has a significant reinforcement effect on the shell and the buckling capacity of the shell is not weaker than the complete composite shell.For the composite shell with through hole,sealing effect can be achieved by the proposed reinforcing structure,but the buckling capacity of the shell after reinforcement can only reach 77%of the original buckling capacity.
基金Projects(51575010,51575009)supported by the National Natural Science Foundations of ChinaProject(Z1511000003150138)supported by Beijing Nova Program,China
文摘In heavy duty machine tools, hydrostatic turntable is often used as a means for providing rotational motion and supporting workpiece, so the accuracy of turntable is crucial for part machining. In order to analyze the influence of load-indcued errors on machining accuracy, an identification model of load-induced errors based on the deformation caused by applied load of hydrostatic turntable of computerized numerical control(CNC) gantry milling heavy machine is proposed. Based on multi-body system theory and screw theory, the space machining accuracy model of heavy duty machine tool is established with consideration of identified load-induced errors. And then, the influence of load-induced errors on space machining accuracy and the roundness error of a milled hole is analyzed. The analysis results show that load-induced errors have a big influence on the roundness error of machined hole, especially when the center of the milled hole is far from that of hydrostatic turntable.
基金Projects (51175518,51705147) supported by the National Natural Science Foundation of China
文摘Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fluid dynamics(CFD)method are both employed by this new model,and thermal effects are also considered.Hydrostatic turntable systems with a series of oil supply pressures,various oil recess depth and several surface roughness parameters are studied.Performance parameters,such as turntable displacement,system flow rate,temperature rise of lubrication,stiffness and damping coefficients,are derived from different working parameters(rotational speed of turntable and exerted external load)of the hydrostatic turntable.Numerical results obtained from this FSI-thermal model are presented and discussed,and theoretical predictions are in good agreement with the experimental data.Therefore,this developed model is a very useful tool for studying hydrostatic turntables.The calculation results show that in order to obtain better performance,a rational selection of the design parameters is essential.
基金supported by the National Natural Science Foundation of China(Grant No.51909219)the National Key Research and Development Program of China(Grant No.2016YFC0301300)+1 种基金Fundamental Research Funds for the Central Universities(Grant No.3102019JC006)China Postdoctoral Science Foundation(Grand No.2020M673492)。
文摘The initial geometric imperfection is one of the primary factors affecting the buckling behaviors of composite cylindrical shells under hydrostatic pressure.In this study,ovality and thickness variations as two representative types of the geometric imperfections are considered.After measuring the geometric imperfections,a typical carbon fiber reinforced polymers(CFRP)cylindrical shell is tested to obtain the buckling pressure.The buckling behaviors of the shell sample are analyzed in combination with the strain responses.By using the nonlinear numerical analysis,the buckling shapes of the CFRP cylinder shells with different combinations of ovality and thickness variation are firstly discussed.The rules of influence of such imperfections on the buckling pressure are then obtained by nonlinear regression method.Finally,an empirical formula is proposed to predict the buckling pressure of the composite cylinder shells,and the calculated results from the formula are in good agreement with the numerical results.
基金Project(zjg0702-01) supported by the Key Program of Natural Science Foundation of Heilongjiang Province, ChinaProject(20050214001) supported by the Doctoral Fund of Ministry of Education of China+1 种基金Project(11531051) supported by the Science and Technology Foundation of Heilongjiang Provincial Education Department, ChinaProject(QC08c88) supported by Heilongjiang Province Foundation for Youths, China.
文摘Based on the application of the four-oil-pad radial hydrostatic bearing in heavy equipments, the deformation of the four-oil-pad radial hydrostatic bearing was calculated by using the finite element method. The formula of film stiffness, film thickness and carrying capacity were established; the influence of the main parameters, such as load, load area and deformation on the supportability was analyzed; and the capacity of the two kinds of bearings was compared. The result shows that the carrying capacity of typeⅠ is prior to that of type Ⅱ . Calculations provide a theoretical basis for the bearing choosing and structure designing in the actual project.
基金Project(20050214001) supported by Doctor Foundation of Education Ministry of ChinaProject(GC05A512) and supported by the Program of Heilongjiang Province Science and Technology, ChinaProject(zjg0702-01) supported by the Natural Science Foundation of Heilongjiang Province, China
文摘A controllable hydrostatic thrust bearing was presented to improve rigidity. The bearing worktable poses were controlled by coupling oilfilm thickness of four controllable chambers. The chamber flow can be regulated by electro hydraulic servo valve-control variable pump according to the surface roughness, load, cutting force, and thermal effects of worktable. The mathematical models of the controllable chamber flow, servo variable mechanism and controller were built. The pose control model was established, which contained the kinematics positive and negative solution and control strategy of feedforward and hydraulic cylinder position feedback. Hardware-in-loop simulation experiment was carried out on the electro hydraulic servo test bench by means of the non-linear relation of film thickness and hydraulic cylinder displacement. Hardware-in-loop simulation experiment results show that the controllable bearings exhibit high oilfilm rigidity, the rising time is 0.24 s and the maximum overshoot is 2.23%, and can be applied in high precision heavy machine tool.
文摘In view of the axial force produced in the working process of double arc helical gear hydraulic pump,the theory of differential equation of curve and curved surface was utilized so that the calculation formula of axial force was obtained and the relationship between the axial force and structure parameters of gears was clarified.In order to balance the axial force,the pressure oil in the high pressure area was introduced into the end face of the plunger to press the plunger against the gear shaft,and the hydrostatic bearing whose type is plunger at the end of the shaft was designed.In order to verify the balance effect of axial force,the leakage owing to end clearance and volume efficiency of gear hydraulic pump before and after the balancing process was analyzed.This paper provides a new analysis idea and balance scheme for the axial force produced in the working process of the double arc helical gear hydraulic pump,which can reduce the leakage owing to end clearance caused by the axial force and improve the volume efficiency of the gear hydraulic pump.
基金the National Natural Science Foundation of China (Grant No. 11772058)。
文摘The Al and La elements are added to the Sn9Zn alloy to obtain the fusible alloy for the mitigation devices of solid propellant rocket motors. Differential scanning calorimetry(DSC), metallographic analysis,scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), tensile testing and fracture analysis were used to study the effect of Al and La elements on the microstructure, melting characteristics, and mechanical properties of the Sn9Zn alloy. Whether the fusible diaphragm can effectively relieve pressure was investigated by the hydrostatic pressure at high-temperature test. Experimental results show that the melting point of the Sn9Zn-0.8Al0·2La and Sn9Zn-3Al0·2La fusible alloys can meet the predetermined working temperature of ventilation. The mechanical properties of those are more than 35% higher than that of the Sn9Zn alloy at-50°C-70°C, and the mechanical strength is reduced by 80% at 175°C. It is proven by the hydrostatic pressure at high-temperature test that the fusible diaphragm can relieve pressure effectively and can be used for the design of the mitigation devices of solid propellant rocket motors.
基金supported by Natural Science Foundation of China(No.31170886)
文摘Erythrocyte tropomodulin(E-Tmod)is a capping protein at the slow-growing end of the actin filaments and regulates the length of the junctional complex in the erythrocyte membrane skeleton<sup>[1]</sup>.E-Tmod has two alternative promoters,P<sub>E0</sub>,and P<sub>E1</sub>,upstream of exons EO and E1,respectively.They drive the expression of two E-Tmod isoforms,E-Tmod41 and ETmod29,which play different yet coordinated roles in cytoskeleton reorganization<sup>[2]</sup>.This study aimed at investigating the expessions of the two E-Tmod isoforms response to the mechanical stresses,i.e.,shear stress and hydrostatic pressure.A cone-plate flow system and a hydrostatic pressure device were developed.Murine erythroleukemia(MEL)cells were subjected