Reaction resonance or Feshbach resonance in polyatomic reaction is one of the most fascinating phenomena in chemical reaction dynamics. The HO+CH4→HO+CH3 reaction is one of the pivotal polyato-mic reactions concerned...Reaction resonance or Feshbach resonance in polyatomic reaction is one of the most fascinating phenomena in chemical reaction dynamics. The HO+CH4→HO+CH3 reaction is one of the pivotal polyato-mic reactions concerned with both the experimental and theoretical scientists. Reaction probabilities and other dynamic properties of this system were calculated with quantum scattering theory method, but a simple QH(v)+HO(j)→Q+H2O(m,n) reaction model was used, in which only three degrees of freedom and the rotating of OH were considered while making CH3 as a pseudo atom. In this paper, by an ab initio method, partial potential energy surface(PPES) was constructed and all the 15 internal degrees-freedom were given. Feshbach resonance mechanism of this reaction can be obtained by the dynamic Eyring Lake on the PPES and the lifetime of the reactive resonance-state can be estimated using the gap of the vibrational energy levels of transient collision complex in the critical transition-state region. Above interesting dynamic properties would not be given by simple pseudo atomic reaction model.展开更多
A novel three dimensional fluorinated gallium phosphate has been hydrothermally synthesized by using diethylenetriamine as an organic structure directing agent. X ray single crystal structure analysis indicates this c...A novel three dimensional fluorinated gallium phosphate has been hydrothermally synthesized by using diethylenetriamine as an organic structure directing agent. X ray single crystal structure analysis indicates this compound crystallizes in the orthorhombic space group Pbca, a =1.605 6(7) nm, b = 1 011 4 (4) nm, c =1.854 6(5) nm, V =3.011 6(19) nm 3, Z =4. The three dimensional framework based on linkage of corner sharing polyhedron PO 4, GaO 4F and GaO 4F 2 delimit ten ring channels along b axis in which the triply protonated amines are located serving as charge compensating guests and supporters.展开更多
文摘Reaction resonance or Feshbach resonance in polyatomic reaction is one of the most fascinating phenomena in chemical reaction dynamics. The HO+CH4→HO+CH3 reaction is one of the pivotal polyato-mic reactions concerned with both the experimental and theoretical scientists. Reaction probabilities and other dynamic properties of this system were calculated with quantum scattering theory method, but a simple QH(v)+HO(j)→Q+H2O(m,n) reaction model was used, in which only three degrees of freedom and the rotating of OH were considered while making CH3 as a pseudo atom. In this paper, by an ab initio method, partial potential energy surface(PPES) was constructed and all the 15 internal degrees-freedom were given. Feshbach resonance mechanism of this reaction can be obtained by the dynamic Eyring Lake on the PPES and the lifetime of the reactive resonance-state can be estimated using the gap of the vibrational energy levels of transient collision complex in the critical transition-state region. Above interesting dynamic properties would not be given by simple pseudo atomic reaction model.
文摘A novel three dimensional fluorinated gallium phosphate has been hydrothermally synthesized by using diethylenetriamine as an organic structure directing agent. X ray single crystal structure analysis indicates this compound crystallizes in the orthorhombic space group Pbca, a =1.605 6(7) nm, b = 1 011 4 (4) nm, c =1.854 6(5) nm, V =3.011 6(19) nm 3, Z =4. The three dimensional framework based on linkage of corner sharing polyhedron PO 4, GaO 4F and GaO 4F 2 delimit ten ring channels along b axis in which the triply protonated amines are located serving as charge compensating guests and supporters.