期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于PSP_HDP主题模型的非结构化经济指标挖掘 被引量:5
1
作者 张奕韬 万常选 +3 位作者 刘喜平 江腾蛟 刘德喜 廖国琼 《软件学报》 EI CSCD 北大核心 2020年第3期845-865,共21页
随着经济活动数据的不断丰富,互联网平台上产生了大量的财经文本,其中蕴含了经济领域发展状况的影响因素.如何从这些财经文本中有效地挖掘与经济有关的经济要素,是实现非结构化数据在经济研究中应用的关键.根据人工构建非结构化经济指... 随着经济活动数据的不断丰富,互联网平台上产生了大量的财经文本,其中蕴含了经济领域发展状况的影响因素.如何从这些财经文本中有效地挖掘与经济有关的经济要素,是实现非结构化数据在经济研究中应用的关键.根据人工构建非结构化经济指标的局限性,以及主题模型在非结构化经济指标挖掘中存在的问题,结合已有经济领域分类标准、词语之间的语义关系和词语对主题的代表性,定义了文档的领域隶属度、词语与主题的语义相关度和词语对主题的贡献度,用于分别描述CRF(Chinese restaurant franchise)中餐厅的菜肴风格、顾客之间对菜肴要求的一致程度和顾客对菜肴的专一程度;结合文档领域属性、词语语义和词语在主题中的出现情况,提出了PSP_HDP(combining documents’domain properties,word semantics and words’presences in topics with HDP)主题模型.由于PSP_HDP主题模型改进了文档-主题与主题-词语的分配过程,从而提高了经济主题的区分度和辨识度,可以更有效地挖掘与经济有关的经济主题和经济要素词.实验结果表明:提出的PSP_HDP主题模型不仅在主题多样性、内容困惑度和模型复杂度等评价指标方面的整体性能优于HDP主题模型,而且在非结构化经济指标挖掘和经济要素词抽取方面能够得到区分度更好、辨识度更高的结果. 展开更多
关键词 hdp主题模型 经济领域分类标准 语义关系 非结构化经济指标 经济要素词
在线阅读 下载PDF
基于HDP的主题词向量构造——以柬语为例
2
作者 李超 严馨 +3 位作者 谢俊 徐广义 周枫 莫源源 《计算机工程与科学》 CSCD 北大核心 2020年第6期1111-1119,共9页
针对单一词向量中存在的一词多义和一义多词的问题,以柬语为例提出了一种基于HDP主题模型的主题词向量的构造方法。在单一词向量基础上融入了主题信息,首先通过HDP主题模型得到单词主题标签,然后将其视为伪单词与单词一起输入Skip-Gram... 针对单一词向量中存在的一词多义和一义多词的问题,以柬语为例提出了一种基于HDP主题模型的主题词向量的构造方法。在单一词向量基础上融入了主题信息,首先通过HDP主题模型得到单词主题标签,然后将其视为伪单词与单词一起输入Skip-Gram模型,同时训练出主题向量和词向量,最后将文本主题信息的主题向量与单词训练后得到的词向量进行级联,获得文本中每个词的主题词向量。与未融入主题信息的词向量模型相比,该方法在单词相似度和文本分类方面均取得了更好的效果,获取的主题词向量具有更多的语义信息。 展开更多
关键词 hdp主题模型 主题词向量 Skip-Gram模型
在线阅读 下载PDF
融合SOM功能聚类与DeepFM质量预测的API服务推荐方法 被引量:25
3
作者 曹步清 肖巧翔 +1 位作者 张祥平 刘建勋 《计算机学报》 EI CSCD 北大核心 2019年第6期1367-1383,共17页
由于越来越多的企业和组织纷纷将自己的业务、数据或资源封装成服务,并通过API的形式发布到互联网上,API服务的数量呈现倍增趋势.在此背景下,如何从这样一个大规模的API服务集合中,快速有效地找到满足开发者用户Mashup需求的API服务,已... 由于越来越多的企业和组织纷纷将自己的业务、数据或资源封装成服务,并通过API的形式发布到互联网上,API服务的数量呈现倍增趋势.在此背景下,如何从这样一个大规模的API服务集合中,快速有效地找到满足开发者用户Mashup需求的API服务,已成为一个挑战性问题.为此,本文聚焦于“推荐合适的API服务以构建高质量Mashup应用”问题,以面向服务内容的功能聚类为基础,结合基于多维服务质量的评分预测,提出一种融合SOM功能聚类与DeepFM质量预测的API服务推荐方法,用于创建高质量的Mashup应用.该方法首先采用Wikipedia 作为外部语料库扩充API服务文档的内容并利用HDP模型建模其主题分布.通过WikiExtractor抽取出Wikipedia中的语料数据,并利用Word2vec工具训练该语料数据获得其词向量模型.利用训练好的Wikipedia词向量模型对API服务描述文档进行扩充.针对扩充后的API服务文档,使用HDP主题建模技术,挖掘出其隐含的主题信息,自动确定最优主题个数,以准确地度量API服务文档之间的语义相似度.然后,采用SOM神经网络进行面向主题的API服务聚类.在HDP主题建模之后,对获得的“API服务文档-主题”向量采用SOM神经网络聚类算法进行主题聚类,通过自组织过程,将众多的API服务划分到不同的功能类簇中,每一个功能类中包含多个具有相似功能的API服务.接下来,针对API服务类簇中所有具有相似功能的API服务,利用DeepFM模型建模和挖掘其多维QoS属性之间的复杂交互关系,预测并排序API服务的质量得分.DeepFM模型自动地提取出QoS数据中(包括流行度、共现次数等)的有效的特征组合关系(包括高阶特征和低阶特征组合关系),预测并排序每一个API服务相对于目标Mashup应用的质量得分,推荐得分靠前的 N 个API服务给开发者用户.最后,在真实Web服务数据集上进行了实验比较与分析,实验结果表明:本文方法在准确率、召回率、纯度、熵、DCG、HMD等性能方面都要整体优于其它六种方法.相比于TF-IDF、LDA-K-CF、LDA-K-FM、HDP-K-CF、HDP-K-FM、HDP-S - FM,本文方法的准确率指标分别提升了196.2%、49%、33.8%、31.2%、12.3%、10.3%,DCG值分别提升了161.8%、26.4%、18.6%、16.2%、6.73%、4.5%. 展开更多
关键词 API推荐 Mashup应用 hdp主题模型 SOM神经网络 深度因子分解机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部