The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau.In the Lunggar deposit,iron mineralization formed in the skarnization contact zone betwe...The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau.In the Lunggar deposit,iron mineralization formed in the skarnization contact zone between the Early Cretaceous granodiorite and the late Permian Xiala Formation limestone.In this study,we achieved detailed zircon U-Pb-Hf isotopes and mineral chemistry for the Early Cretaceous granodiorite.Zircon U-Pb dating results indicate that the Early Cretaceous granodiorite emplaced at ca.119 Ma.Based on the trace elements in zircons and the mineral chemical composition of amphibole and biotite,the Early Cretaceous granodiorite was believed to form under condition of high temperature(>700°C),low pressure(100400 MPa),and relatively high oxygen fugacity(lgfO2)(13.6 to 13.9)and H2O content(4%8%).Zircon trace elements,Hf isotope and biotite chemistry collectively reveal that significant juvenile mantle-derived magmas contributed to the source of the granodiorite.The relatively high logfO2 and shallow magma chamber are beneficial for skarn iron mineralization,implying remarkable potential for further prospecting in the Lunggar iron deposit.展开更多
As part of the mosaic of micro-continents within the Central Asian Orogenic Belt(CAOB), the Xing’anAirgin Sum Block(XAB) features increasingly-recognized Meso-Neoproterozoic geological records. However, the origin, t...As part of the mosaic of micro-continents within the Central Asian Orogenic Belt(CAOB), the Xing’anAirgin Sum Block(XAB) features increasingly-recognized Meso-Neoproterozoic geological records. However, the origin, temporal-spatial distribution of ancient materials, and their roles in crust evolution remain to debate. This paper presents an integrated study of zircon U-Pb ages and Hf-O isotopes for Mesoproterozoic and Paleozoic granites from the Erenhot region of central Inner Mongolia, along eastern CAOB. The intrusion of 1450 Ma syenogranite denotes that the Precambrian basement of XAB extends from Sonid Zuoqi westward to Erenhot. The 384 and 281 Ma monzogranites containing Mesoproterozoic xenocrystic zircons possess Proterozoic-dominant two-stage Hf model ages, further suggesting the wide existence of Proterozoic crust beneath western XAB. Cyclic Proterozoic crustal growth and reworking seem to show close linkages with the orogenesis during relevant supercontinent cycles. 1450-1360 Ma juvenile crustal growth at Erenhot and synchronous ancient crust reworking at Sonid Zuoqi and Abagaqi were likely resulted from retreating subduction involved in Columbia breakup, while 1.2-1.0 Ga reworking and 0.9-0.7 Ga growth events within the Erenhot basement might respond to assembly and breakup of Rodinia, respectively. Besides, our work confirms that reworking of Neoproterozoic crust played important roles during Paleozoic multi-stage accretion of CAOB.展开更多
We present the first large dataset of dissolved silicon isotopes signatures(δ<sup>30</sup>Si)in different tropical rivers,including the Amazon and the Congo,the two largest silicon suppliers to the world ...We present the first large dataset of dissolved silicon isotopes signatures(δ<sup>30</sup>Si)in different tropical rivers,including the Amazon and the Congo,the two largest silicon suppliers to the world ocean.A two-year long monthly series was obtained in the Congo River upstream of the Kinshasa/Brazzaville urban zone.Spatial and temporal variations in the Amazon River and its main tributaries were studied for one year.Both the Congo and Amazon rivers convey similar meanδ<sup>30</sup>Si signatures to the ocean (close to +0.8‰),in the range of the few previously published data for those rivers.The Congo River exhibits limited seasonal variations,with the exception of some largeδ<sup>30</sup>Si variations that展开更多
The Nage Cu-Pb polymetallic deposit is located in the transitional zone of the Yangtze craton and cathaysia,that is the southwest of Jiangnan orogenic belt. The mainly strata are Wentong formation of Mesoproterozoic S...The Nage Cu-Pb polymetallic deposit is located in the transitional zone of the Yangtze craton and cathaysia,that is the southwest of Jiangnan orogenic belt. The mainly strata are Wentong formation of Mesoproterozoic Sibo group and the Jialu formation(Qbj) ,Wuye formation(Qbw) ,Fanzhao formation(Qbf) and Gongdong formation(Qbg) of the Neoproterozoic Qingbaikou System Xiajiang group.展开更多
No. 22 ore of Dafulou deposit was systematically analyzed for sulfur isotopes. The results show that the δ34S values of sulfide minerals, ranging from 0.154 to +0.218% and with an average value of +0.114 1%, are most...No. 22 ore of Dafulou deposit was systematically analyzed for sulfur isotopes. The results show that the δ34S values of sulfide minerals, ranging from 0.154 to +0.218% and with an average value of +0.114 1%, are mostly positive and characterized by rich sulfur(S) content. This suggests that the sulfur of the Dafulou ore deposit is derived from magma and relates to the Longxianggai concealed granite, which points to the important role of magma during mineralization and implyies the product of the active continental margin. By comparison between the Dafulou and the Kengma tin deposit, significant differences exist in the sulfur isotope composition. In the Kengma deposit, the sulfur isotope composition is characterized by the high negative value, which is different from the Dafulou tin-polymetallic deposit. The difference of the enrichment and fractionation of the sulfur isotope is the synthesized result of the metallogenic conditions. It also has the difference in the metallogenic environment and metallogenic characteristics of the deposit in the same ore belt.展开更多
The heavy metal(such as Cr,Ni,Cu,Cd,Pb,and Zn)concentration,speciation,and pollution source in 43 sediment samples from the Xiangjiang River were investigated using sequential extraction combined with Pb isotope analy...The heavy metal(such as Cr,Ni,Cu,Cd,Pb,and Zn)concentration,speciation,and pollution source in 43 sediment samples from the Xiangjiang River were investigated using sequential extraction combined with Pb isotope analysis.Cu,Cd,Pb,and Zn concentrations are higher than their background values,while Cr and Ni concentrations are close to those.Sequential extraction demonstrates that heavy metals have different fractions,showing different bioavailabilities.The w(206Pb)/w(207Pb)ratio increases with decreasing bioavailability in the order of exchangeable<carbonate≈Fe-Mn oxides≈organic<residual(p<0.05).Wastewater,dust,and slag from mining and smelting areas,and the residual Pb are assumed to be the primary anthropogenic and natural sources of Pb,respectively.The percentages of anthropogenic Pb in the exchangeable,carbonate,Fe-Mn oxides,and organic fractions are(91.5±16.7)%,(61.1±13.9)%,(57.4±11.1)%,and(55.5±11.2)%,respectively,suggesting a significant input of anthropogenic Pb in these four fractions.展开更多
Continuous precipitation was sampled at several stations in the southern Tibetan plateau to study the variation of stable isotope in precipitation. Our work shows that there is a strong signal of monsoon precipitation...Continuous precipitation was sampled at several stations in the southern Tibetan plateau to study the variation of stable isotope in precipitation. Our work shows that there is a strong signal of monsoon precipitation in the stable isotope of precipitation, which is quite different from that in other regions in the Tibetan plateau. The spatial variation, the seasonal variation of δ 18 O and the relationship between δ 18 O in precipitation and local meteorological parameters are all affected by monsoon precipitation in the south of Tibetan plateau.From the spatial variation, precipitation samples were collected from a dozen stations from south to north of the Tibetan plateau. A strong spatial variation of stable isotope in precipitation has been found. Extremely low value of δ 18 O in precipitation in the south of Tibetan plateau can be seen which can be contributed to the monsoon precipitation in the south of Tibetan plateau. The strong precipitation in the south slope of Himalayas Mts. depleted heavily the heavy stable isotope which resulting in very low δ 18 O in precipitation in the south of Tibetan plateau. This work also shows that the monsoon precipitation can affect effectively as far as to the Tanggula Mts. in the middle of the Tibetan plateau.展开更多
An online method using continuous flow isotope ratio mass spectrometry (CF-IRMS) interfaced with a Gasbench Ⅱ was presented to determine chlorine stable isotope composition. Silver chloride (AgCl) was quantitativ...An online method using continuous flow isotope ratio mass spectrometry (CF-IRMS) interfaced with a Gasbench Ⅱ was presented to determine chlorine stable isotope composition. Silver chloride (AgCl) was quantitatively derived from chloride by using silver nitrate (AgNO3), and then was reacted with iodomethane (CH3Ⅰ) to produce methyl chloride (CH3Cl). A GasBench Ⅱ equipped with a PoraPlot Q column was used to separate CH3Cl from any other gas species. Finally, chlorine stable isotope analysis was carried out on CH3Cl introduced to the IRMS in a helium stream via an active open split. The minimum amount of Cl used in this method is of the order of 1.4 μmol. Inter-laboratory and inter-technique comparisons show that the total uncertainty incorporating both the precision and accuracy of this method is better than 0.007%. Furthermore, ten seawaters sampled from different locations have a narrow δ37Cl value range from -0.008% to 0.010%, with a mean value of (0.000±0.006)%. This supports the assumption that any seawater can be representative of standard mean ocean chloride (SMOC) and used as an international reference material.展开更多
Hejiangkou W-Sn-polymetallic deposit is a newly found deposit in Xitian ore field,one of the important and large scale W-Sn-polymetallic ore fields in the middle segment of Nanling metallogenic zone.Re-Os isotope dati...Hejiangkou W-Sn-polymetallic deposit is a newly found deposit in Xitian ore field,one of the important and large scale W-Sn-polymetallic ore fields in the middle segment of Nanling metallogenic zone.Re-Os isotope dating was used on three molybdenite samples from Hejiangkou deposit to determine the ore forming period.The result is(224.9±2.6)Ma-(225±3.1)Ma and isochron age is(225.5±3.6)Ma.The field geological observations,geochronological data and optical petrography indicated that Hejiangkou deposit underwent multi-period of superimposed mineralization.It can be differentiated into three periods composed of six mineralization stages.The first period is the initial period for hydrothermal metasomatism and metal element enrichment during Indosinian Epoch.Further enrichment,strong brittle fracturing and hydrothermal metasomatism,remobilization and superimposition happened in the second period,during early Yanshanian.It is the major mineralization period of Hejiangkou deposit and can be subdivided into four mineralization stages,namely the skarn stage,oxide stage,high-temperature sulfide stage and low-temperature sulfide stage.And the third period is the mineralization period of a porphyry-skarn system related to the emplacement of the granite porphyry dyke.As minerogenic epoch of Hejiangkou deposit is similar with Hehuaping deposit,they show the possibility of Indosinian mineralization event in Nanling metallogenic zone.It can be an important perspective in any future mineral exploration in the same metallogenic zone.展开更多
Based on the metallogenetic geology conditions, the H, O, C and S isotopic compositions were measured by MAT-251 mass spectrometer, and Pb isotope and Rb-Sr dating were carried with MAT-261 multi-acceptor mass spectro...Based on the metallogenetic geology conditions, the H, O, C and S isotopic compositions were measured by MAT-251 mass spectrometer, and Pb isotope and Rb-Sr dating were carried with MAT-261 multi-acceptor mass spectrometer. The results show that the δ^180 values of gold-bearing vein quartz from different levels are 1.19%-1.42%. The calculated δ^180 values of ore fluids are 0.55%-0.78%, and 319 values are from -8.64% to -6.66%. The calculated values of δ^34SH2s by the δ^34Spy values in quartz veins display sulfur isotope compositions from -0.053% to +0.413%. Carbon isotope compositions of carbonates are from -0.612% to 0.140%. The mole ratios of ^206Pb to ^204Pb, ^207Pb to ^204Pb and ^208Pb to ^204Pb in auriferous quartz vein are 16.987-17.545, 15.342-15.623, and 38.254-38.744, respectively. The age of the Zhuanghe gold deposit determined by Rb-Sr isochron of the fluid inclusions in quartzes is (143.0±5.8) Ma. These isotopic data suggest that the metallogenetic fluids are generated from magmatic hydrotherm and the origin of ore-forming matters is related to the deep-derived magmatic activities. Meanwhile, the metallogenetic epoch of the Zhuanghe gold deposit is in Yanshanian period.展开更多
Carbon and oxygen isotope and dating analyses of foraminiferan in sediment cores collected from three different areas of the northern slope of the South China Sea were conducted, in order to examine the records of the...Carbon and oxygen isotope and dating analyses of foraminiferan in sediment cores collected from three different areas of the northern slope of the South China Sea were conducted, in order to examine the records of the gas hydrate decomposition events since the late Quaternary under the conditions of methane seepage. The results show that: 1) the δ13C values of the benthic foraminiferan Uvigerina spp. (size range of 0.25-0.35 ram) are from -0.212% to -0.021% and the δ180 values of the planktonic foraminiferan Globigerinoides ruber (size range of 0.25-0.35 ram) are from -0.311% to -0.060%; 2) three cores (ZD2, ZD3 and ZS5) from the bottom of a hole are aged for 11 814, 26 616 and 64 090 a corresponding to the early oxygen isotope stage (MIS) Ⅰ, Ⅲ and Ⅳ final period, respectively; 3) a negative-skewed layer of carbon isotope corresponds to that of MIS II (cold period), whose degree of negative bias is -0.2%0; and 4) the δ13C compositions of foraminiferans are similar to those of the Blake Ridge and the Gulf of Mexico sediments of the late Quaternary. According to the analysis, the reasons for these results are that the studied area is a typical area of methane seep environment in the area during MIS II due to the global sea-level fall and sea pressure decrease. Gas hydrate is decomposed and released, and a large number of light carbon isotopes of methane are released into the ocean, dissolved to inorganic carbon (DIC) pool and recorded in the foraminiferan shells. A pyrite layer developed in the negative bias layers of the foraminiferans confirms that the δ13C of foraminiferans is more affected by methane and less by the reduction of marine productivity and early diagenesis. The use of foraminiferan δ13C could accurately determine late Quaternary hydrate release events and provide evidence for both reconstructing the geological history of methane release events and exploring natural gas hydrate.展开更多
The Qujiashan manganese deposit is located in the Longmen-Daba fold belt along the northern margin of the Yangtze Block. The layered ore bodies are distributed within the purple-red calcareous shale. Qujiashan is a hi...The Qujiashan manganese deposit is located in the Longmen-Daba fold belt along the northern margin of the Yangtze Block. The layered ore bodies are distributed within the purple-red calcareous shale. Qujiashan is a high-grade w(MnO)=8.92% to 18.76%) manganese deposit with low-phosphorus w(P2O5)=0.08% to 0.16%) content. It also has a low total REEs contents(with an average of 101.3×10-6), and has inconspicuous Ce(0.81 to 1.29) and Eu(1.00 to 1.25) anomalies. lg(Ce/Ce*) values are from-0.02 to 0.11. The ores have high SiO2/Al2O3 and Al/(Al + Fe + Mn) ratios. In figures of Fe–Mn–[(Ni+Cu+Co)×10] and lgU–lgTh, all samples show that hydrothermal exhalative fluids played an important role during mineralisation. The δ13CPDB and δ18OSMOW values of eight ore samples are from-20.7‰ to-8.2‰(with an average of-12.4‰) and from 14.3‰ to 18.7‰(with an average of 17.0‰), respectively. These carbon and oxygen isotopic features indicate that hydrothermal fluids derived from deep earth are participation in the metallogenic process, which is also supported by high paleo-seawater temperatures varying from 47.08 to 73.98 °C. Therefore, the geological and geochemical evidences show that the Qujiashan deposit formed from submarine exhalative hydrothermal sedimentation.展开更多
The isotopic signature of mid\|ocean ridge basalts (MORB) from the Indian Ocean is different from that of MORB from the Pacific and North\|Atlantic oceans.. The Indian MORB is characterized by lower 206 Pb/ 204 Pb, hi...The isotopic signature of mid\|ocean ridge basalts (MORB) from the Indian Ocean is different from that of MORB from the Pacific and North\|Atlantic oceans.. The Indian MORB is characterized by lower 206 Pb/ 204 Pb, hi gher 87 Sr/ 86 Sr, and lower 206 Pb/ 204 Pb for given 143 Nd/ 144 Nd than the latter (Hart, 1984; Castillo, 1988; Mahoney et al., 1998). Why the Indian Ocean mantle domain is different from the Pacific and North\|Atlantic ocean mantle domain is still unclear. Two general classes of hypotheses have been proposed to explain the origin of Indian mantle (Mahoney et al., 1998). The first one is that the components of the Indian Ocean mantle domain are a fairly young mantle end\|member created during the processes of breakup of the Gondwana continent to form the Indian Ocean. The second hypothesis posits that the Indian MORB\|type isotopic signature is a long\|lived mantle domain that existed prior to the formation of the present Indian Ocean. Thus it appears that one of the keys to a better understanding of origin of the Indian Ocean\|type isotopic signature depends on its age. Although some studies (Mahoney et al., 1998; Weis and Frey, 1997) showed that the isotopic signature was as old as the Indian ocean crust (140Ma), basalts investigated in the Indian Ocean region do not prove or disprove the existence of the Indian MORB\|type isotopic signature prior to the Indian Ocean because they were taken from the Indian ocean basin itself.展开更多
基金Project(2018YSJS14)supported by the Open Research Fund Program of Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University),Ministry of Education,China
文摘The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau.In the Lunggar deposit,iron mineralization formed in the skarnization contact zone between the Early Cretaceous granodiorite and the late Permian Xiala Formation limestone.In this study,we achieved detailed zircon U-Pb-Hf isotopes and mineral chemistry for the Early Cretaceous granodiorite.Zircon U-Pb dating results indicate that the Early Cretaceous granodiorite emplaced at ca.119 Ma.Based on the trace elements in zircons and the mineral chemical composition of amphibole and biotite,the Early Cretaceous granodiorite was believed to form under condition of high temperature(>700°C),low pressure(100400 MPa),and relatively high oxygen fugacity(lgfO2)(13.6 to 13.9)and H2O content(4%8%).Zircon trace elements,Hf isotope and biotite chemistry collectively reveal that significant juvenile mantle-derived magmas contributed to the source of the granodiorite.The relatively high logfO2 and shallow magma chamber are beneficial for skarn iron mineralization,implying remarkable potential for further prospecting in the Lunggar iron deposit.
基金Projects(41873035,41802053) supported by the National Natural Science Foundation of ChinaProject(ZD2021015) supported by the Science and Technology Project of Hebei Education Department,China+1 种基金Project(SCRM2116) supported by the Opening Foundation of Hebei Key Laboratory of Strategic Critical Mineral Resources,ChinaProject(202045004) supported by the Scientific Research Starting Foundation of Central South University,China。
文摘As part of the mosaic of micro-continents within the Central Asian Orogenic Belt(CAOB), the Xing’anAirgin Sum Block(XAB) features increasingly-recognized Meso-Neoproterozoic geological records. However, the origin, temporal-spatial distribution of ancient materials, and their roles in crust evolution remain to debate. This paper presents an integrated study of zircon U-Pb ages and Hf-O isotopes for Mesoproterozoic and Paleozoic granites from the Erenhot region of central Inner Mongolia, along eastern CAOB. The intrusion of 1450 Ma syenogranite denotes that the Precambrian basement of XAB extends from Sonid Zuoqi westward to Erenhot. The 384 and 281 Ma monzogranites containing Mesoproterozoic xenocrystic zircons possess Proterozoic-dominant two-stage Hf model ages, further suggesting the wide existence of Proterozoic crust beneath western XAB. Cyclic Proterozoic crustal growth and reworking seem to show close linkages with the orogenesis during relevant supercontinent cycles. 1450-1360 Ma juvenile crustal growth at Erenhot and synchronous ancient crust reworking at Sonid Zuoqi and Abagaqi were likely resulted from retreating subduction involved in Columbia breakup, while 1.2-1.0 Ga reworking and 0.9-0.7 Ga growth events within the Erenhot basement might respond to assembly and breakup of Rodinia, respectively. Besides, our work confirms that reworking of Neoproterozoic crust played important roles during Paleozoic multi-stage accretion of CAOB.
文摘We present the first large dataset of dissolved silicon isotopes signatures(δ<sup>30</sup>Si)in different tropical rivers,including the Amazon and the Congo,the two largest silicon suppliers to the world ocean.A two-year long monthly series was obtained in the Congo River upstream of the Kinshasa/Brazzaville urban zone.Spatial and temporal variations in the Amazon River and its main tributaries were studied for one year.Both the Congo and Amazon rivers convey similar meanδ<sup>30</sup>Si signatures to the ocean (close to +0.8‰),in the range of the few previously published data for those rivers.The Congo River exhibits limited seasonal variations,with the exception of some largeδ<sup>30</sup>Si variations that
基金National Basic Research Program of China(No.2007CB411402)Cooperation Program of Institute of Geochemistry and Guizhou Geology and Minerals Bureau 102 Geology Group
文摘The Nage Cu-Pb polymetallic deposit is located in the transitional zone of the Yangtze craton and cathaysia,that is the southwest of Jiangnan orogenic belt. The mainly strata are Wentong formation of Mesoproterozoic Sibo group and the Jialu formation(Qbj) ,Wuye formation(Qbw) ,Fanzhao formation(Qbf) and Gongdong formation(Qbg) of the Neoproterozoic Qingbaikou System Xiajiang group.
基金Project(41202051) supported by the National Natural Science Foundation of ChinaProject(2012M521721) supported by China Postdoctoral Science FoundationProject(CSUZC2013021) supported by Valuable Equipment Open Sharing Fund of Central South University,China
文摘No. 22 ore of Dafulou deposit was systematically analyzed for sulfur isotopes. The results show that the δ34S values of sulfide minerals, ranging from 0.154 to +0.218% and with an average value of +0.114 1%, are mostly positive and characterized by rich sulfur(S) content. This suggests that the sulfur of the Dafulou ore deposit is derived from magma and relates to the Longxianggai concealed granite, which points to the important role of magma during mineralization and implyies the product of the active continental margin. By comparison between the Dafulou and the Kengma tin deposit, significant differences exist in the sulfur isotope composition. In the Kengma deposit, the sulfur isotope composition is characterized by the high negative value, which is different from the Dafulou tin-polymetallic deposit. The difference of the enrichment and fractionation of the sulfur isotope is the synthesized result of the metallogenic conditions. It also has the difference in the metallogenic environment and metallogenic characteristics of the deposit in the same ore belt.
基金Project(2009ZX07212-001)supported by the Major Science and Technology Program for Water Pollution Control and Treatment of ChinaProject(51079002)supported by the National Natural Science Foundation of China
文摘The heavy metal(such as Cr,Ni,Cu,Cd,Pb,and Zn)concentration,speciation,and pollution source in 43 sediment samples from the Xiangjiang River were investigated using sequential extraction combined with Pb isotope analysis.Cu,Cd,Pb,and Zn concentrations are higher than their background values,while Cr and Ni concentrations are close to those.Sequential extraction demonstrates that heavy metals have different fractions,showing different bioavailabilities.The w(206Pb)/w(207Pb)ratio increases with decreasing bioavailability in the order of exchangeable<carbonate≈Fe-Mn oxides≈organic<residual(p<0.05).Wastewater,dust,and slag from mining and smelting areas,and the residual Pb are assumed to be the primary anthropogenic and natural sources of Pb,respectively.The percentages of anthropogenic Pb in the exchangeable,carbonate,Fe-Mn oxides,and organic fractions are(91.5±16.7)%,(61.1±13.9)%,(57.4±11.1)%,and(55.5±11.2)%,respectively,suggesting a significant input of anthropogenic Pb in these four fractions.
文摘Continuous precipitation was sampled at several stations in the southern Tibetan plateau to study the variation of stable isotope in precipitation. Our work shows that there is a strong signal of monsoon precipitation in the stable isotope of precipitation, which is quite different from that in other regions in the Tibetan plateau. The spatial variation, the seasonal variation of δ 18 O and the relationship between δ 18 O in precipitation and local meteorological parameters are all affected by monsoon precipitation in the south of Tibetan plateau.From the spatial variation, precipitation samples were collected from a dozen stations from south to north of the Tibetan plateau. A strong spatial variation of stable isotope in precipitation has been found. Extremely low value of δ 18 O in precipitation in the south of Tibetan plateau can be seen which can be contributed to the monsoon precipitation in the south of Tibetan plateau. The strong precipitation in the south slope of Himalayas Mts. depleted heavily the heavy stable isotope which resulting in very low δ 18 O in precipitation in the south of Tibetan plateau. This work also shows that the monsoon precipitation can affect effectively as far as to the Tanggula Mts. in the middle of the Tibetan plateau.
基金Projects(40772156, 41072179) supported by the National Natural Science Foundation of China
文摘An online method using continuous flow isotope ratio mass spectrometry (CF-IRMS) interfaced with a Gasbench Ⅱ was presented to determine chlorine stable isotope composition. Silver chloride (AgCl) was quantitatively derived from chloride by using silver nitrate (AgNO3), and then was reacted with iodomethane (CH3Ⅰ) to produce methyl chloride (CH3Cl). A GasBench Ⅱ equipped with a PoraPlot Q column was used to separate CH3Cl from any other gas species. Finally, chlorine stable isotope analysis was carried out on CH3Cl introduced to the IRMS in a helium stream via an active open split. The minimum amount of Cl used in this method is of the order of 1.4 μmol. Inter-laboratory and inter-technique comparisons show that the total uncertainty incorporating both the precision and accuracy of this method is better than 0.007%. Furthermore, ten seawaters sampled from different locations have a narrow δ37Cl value range from -0.008% to 0.010%, with a mean value of (0.000±0.006)%. This supports the assumption that any seawater can be representative of standard mean ocean chloride (SMOC) and used as an international reference material.
基金Project(41403035)supported by the National Natural Science Foundation of ChinaProject(13JJ4041)supported by Hunan Provincial National Natural Science Foundation,China
文摘Hejiangkou W-Sn-polymetallic deposit is a newly found deposit in Xitian ore field,one of the important and large scale W-Sn-polymetallic ore fields in the middle segment of Nanling metallogenic zone.Re-Os isotope dating was used on three molybdenite samples from Hejiangkou deposit to determine the ore forming period.The result is(224.9±2.6)Ma-(225±3.1)Ma and isochron age is(225.5±3.6)Ma.The field geological observations,geochronological data and optical petrography indicated that Hejiangkou deposit underwent multi-period of superimposed mineralization.It can be differentiated into three periods composed of six mineralization stages.The first period is the initial period for hydrothermal metasomatism and metal element enrichment during Indosinian Epoch.Further enrichment,strong brittle fracturing and hydrothermal metasomatism,remobilization and superimposition happened in the second period,during early Yanshanian.It is the major mineralization period of Hejiangkou deposit and can be subdivided into four mineralization stages,namely the skarn stage,oxide stage,high-temperature sulfide stage and low-temperature sulfide stage.And the third period is the mineralization period of a porphyry-skarn system related to the emplacement of the granite porphyry dyke.As minerogenic epoch of Hejiangkou deposit is similar with Hehuaping deposit,they show the possibility of Indosinian mineralization event in Nanling metallogenic zone.It can be an important perspective in any future mineral exploration in the same metallogenic zone.
基金Project(20040491502) supported by the Doctoral Education Program Fund of Ministry of Education, China
文摘Based on the metallogenetic geology conditions, the H, O, C and S isotopic compositions were measured by MAT-251 mass spectrometer, and Pb isotope and Rb-Sr dating were carried with MAT-261 multi-acceptor mass spectrometer. The results show that the δ^180 values of gold-bearing vein quartz from different levels are 1.19%-1.42%. The calculated δ^180 values of ore fluids are 0.55%-0.78%, and 319 values are from -8.64% to -6.66%. The calculated values of δ^34SH2s by the δ^34Spy values in quartz veins display sulfur isotope compositions from -0.053% to +0.413%. Carbon isotope compositions of carbonates are from -0.612% to 0.140%. The mole ratios of ^206Pb to ^204Pb, ^207Pb to ^204Pb and ^208Pb to ^204Pb in auriferous quartz vein are 16.987-17.545, 15.342-15.623, and 38.254-38.744, respectively. The age of the Zhuanghe gold deposit determined by Rb-Sr isochron of the fluid inclusions in quartzes is (143.0±5.8) Ma. These isotopic data suggest that the metallogenetic fluids are generated from magmatic hydrotherm and the origin of ore-forming matters is related to the deep-derived magmatic activities. Meanwhile, the metallogenetic epoch of the Zhuanghe gold deposit is in Yanshanian period.
基金Project(40976035) supported by the National Natural Science Foundation of ChinaProject(2009CB219501) supported by the National Basic Research Program of ChinaProject(908-ZC-I-07) supported by the Special Program of Comprehensive Survey and Assessment Offshore China Sea
文摘Carbon and oxygen isotope and dating analyses of foraminiferan in sediment cores collected from three different areas of the northern slope of the South China Sea were conducted, in order to examine the records of the gas hydrate decomposition events since the late Quaternary under the conditions of methane seepage. The results show that: 1) the δ13C values of the benthic foraminiferan Uvigerina spp. (size range of 0.25-0.35 ram) are from -0.212% to -0.021% and the δ180 values of the planktonic foraminiferan Globigerinoides ruber (size range of 0.25-0.35 ram) are from -0.311% to -0.060%; 2) three cores (ZD2, ZD3 and ZS5) from the bottom of a hole are aged for 11 814, 26 616 and 64 090 a corresponding to the early oxygen isotope stage (MIS) Ⅰ, Ⅲ and Ⅳ final period, respectively; 3) a negative-skewed layer of carbon isotope corresponds to that of MIS II (cold period), whose degree of negative bias is -0.2%0; and 4) the δ13C compositions of foraminiferans are similar to those of the Blake Ridge and the Gulf of Mexico sediments of the late Quaternary. According to the analysis, the reasons for these results are that the studied area is a typical area of methane seep environment in the area during MIS II due to the global sea-level fall and sea pressure decrease. Gas hydrate is decomposed and released, and a large number of light carbon isotopes of methane are released into the ocean, dissolved to inorganic carbon (DIC) pool and recorded in the foraminiferan shells. A pyrite layer developed in the negative bias layers of the foraminiferans confirms that the δ13C of foraminiferans is more affected by methane and less by the reduction of marine productivity and early diagenesis. The use of foraminiferan δ13C could accurately determine late Quaternary hydrate release events and provide evidence for both reconstructing the geological history of methane release events and exploring natural gas hydrate.
基金Project(41663006)supported by the National Natural Science Foundation of ChinaProject(1212011220725)supported by the Geological Survey Project of the China Geological Survey
文摘The Qujiashan manganese deposit is located in the Longmen-Daba fold belt along the northern margin of the Yangtze Block. The layered ore bodies are distributed within the purple-red calcareous shale. Qujiashan is a high-grade w(MnO)=8.92% to 18.76%) manganese deposit with low-phosphorus w(P2O5)=0.08% to 0.16%) content. It also has a low total REEs contents(with an average of 101.3×10-6), and has inconspicuous Ce(0.81 to 1.29) and Eu(1.00 to 1.25) anomalies. lg(Ce/Ce*) values are from-0.02 to 0.11. The ores have high SiO2/Al2O3 and Al/(Al + Fe + Mn) ratios. In figures of Fe–Mn–[(Ni+Cu+Co)×10] and lgU–lgTh, all samples show that hydrothermal exhalative fluids played an important role during mineralisation. The δ13CPDB and δ18OSMOW values of eight ore samples are from-20.7‰ to-8.2‰(with an average of-12.4‰) and from 14.3‰ to 18.7‰(with an average of 17.0‰), respectively. These carbon and oxygen isotopic features indicate that hydrothermal fluids derived from deep earth are participation in the metallogenic process, which is also supported by high paleo-seawater temperatures varying from 47.08 to 73.98 °C. Therefore, the geological and geochemical evidences show that the Qujiashan deposit formed from submarine exhalative hydrothermal sedimentation.
文摘The isotopic signature of mid\|ocean ridge basalts (MORB) from the Indian Ocean is different from that of MORB from the Pacific and North\|Atlantic oceans.. The Indian MORB is characterized by lower 206 Pb/ 204 Pb, hi gher 87 Sr/ 86 Sr, and lower 206 Pb/ 204 Pb for given 143 Nd/ 144 Nd than the latter (Hart, 1984; Castillo, 1988; Mahoney et al., 1998). Why the Indian Ocean mantle domain is different from the Pacific and North\|Atlantic ocean mantle domain is still unclear. Two general classes of hypotheses have been proposed to explain the origin of Indian mantle (Mahoney et al., 1998). The first one is that the components of the Indian Ocean mantle domain are a fairly young mantle end\|member created during the processes of breakup of the Gondwana continent to form the Indian Ocean. The second hypothesis posits that the Indian MORB\|type isotopic signature is a long\|lived mantle domain that existed prior to the formation of the present Indian Ocean. Thus it appears that one of the keys to a better understanding of origin of the Indian Ocean\|type isotopic signature depends on its age. Although some studies (Mahoney et al., 1998; Weis and Frey, 1997) showed that the isotopic signature was as old as the Indian ocean crust (140Ma), basalts investigated in the Indian Ocean region do not prove or disprove the existence of the Indian MORB\|type isotopic signature prior to the Indian Ocean because they were taken from the Indian ocean basin itself.