The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the ...The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the servo system control problem is transferred into the problem of robust performance optimizing under regional poles constrains described by linear matrix inequality (LMI). These LMIs are easy to solve through the Matlab LMI-toolbox. Simulations indicate that the controller has excellent dynamic, static and disturbance rejection performance, and the control system is robust and has perfect H2 performance to the bounded external torque disturbance.展开更多
Roll motion of ships can be distinguished in two parts:an unavoidable part due to their natural movement while turning and an unwanted and avoidable part that is due to encounter with waves and rough seas in general.F...Roll motion of ships can be distinguished in two parts:an unavoidable part due to their natural movement while turning and an unwanted and avoidable part that is due to encounter with waves and rough seas in general.For the attenuation of the unwanted part of roll motion,ways have been developed such as addition of controllable fins and changes in shape.This paper investigates the effectiveness of augmenting the rudder used for rejecting part of the unwanted roll,while maintaining steering and course changing ability.For this purpose,a controller is designed,which acts through intentional superposition of fast,compared with course change,movements of rudder,in order to attenuate the high-frequency roll effects from encountering rough seas.The results obtained by simulation to exogenous disturbance support the conclusion that the roll stabilization for displacement can be effective at least when displacement hull vessels are considered.Moreover,robust stability and performance is verified for the proposed control scheme over the entire operating range of interest.展开更多
A necessary maximum principle is given for nonzero-sum stochastic Oltterential games with random jumps. The result is applied to solve the H2/H∞ control problem of stochastic systems with random jumps. A necessary an...A necessary maximum principle is given for nonzero-sum stochastic Oltterential games with random jumps. The result is applied to solve the H2/H∞ control problem of stochastic systems with random jumps. A necessary and sufficient condition for the existence of a unique solution to the H2/H∞ control problem is derived. The resulting solution is given by the solution of an uncontrolled forward backward stochastic differential equation with random jumps.展开更多
The problem of H2 output feedback control for generalized system with structural uncertainties is studied using linear matrix inequality approach. A sufficient condition Of linear matrix inequality is presented such t...The problem of H2 output feedback control for generalized system with structural uncertainties is studied using linear matrix inequality approach. A sufficient condition Of linear matrix inequality is presented such that the closed-loop system is stable and satisfies H2 performance for all admissible uncertainties. Furthermore, the solution of the controller is given. An H2 output feedback controller is designed in the airborne dispenser pitch channel, and the simulation results show that the controller is effective.展开更多
文摘The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the servo system control problem is transferred into the problem of robust performance optimizing under regional poles constrains described by linear matrix inequality (LMI). These LMIs are easy to solve through the Matlab LMI-toolbox. Simulations indicate that the controller has excellent dynamic, static and disturbance rejection performance, and the control system is robust and has perfect H2 performance to the bounded external torque disturbance.
文摘Roll motion of ships can be distinguished in two parts:an unavoidable part due to their natural movement while turning and an unwanted and avoidable part that is due to encounter with waves and rough seas in general.For the attenuation of the unwanted part of roll motion,ways have been developed such as addition of controllable fins and changes in shape.This paper investigates the effectiveness of augmenting the rudder used for rejecting part of the unwanted roll,while maintaining steering and course changing ability.For this purpose,a controller is designed,which acts through intentional superposition of fast,compared with course change,movements of rudder,in order to attenuate the high-frequency roll effects from encountering rough seas.The results obtained by simulation to exogenous disturbance support the conclusion that the roll stabilization for displacement can be effective at least when displacement hull vessels are considered.Moreover,robust stability and performance is verified for the proposed control scheme over the entire operating range of interest.
基金supported by the Doctoral foundation of University of Jinan(XBS1213)the National Natural Science Foundation of China(11101242)
文摘A necessary maximum principle is given for nonzero-sum stochastic Oltterential games with random jumps. The result is applied to solve the H2/H∞ control problem of stochastic systems with random jumps. A necessary and sufficient condition for the existence of a unique solution to the H2/H∞ control problem is derived. The resulting solution is given by the solution of an uncontrolled forward backward stochastic differential equation with random jumps.
基金Sponsored by the Ministerial Level Advanced Research Foundation (G423BQ0110)
文摘The problem of H2 output feedback control for generalized system with structural uncertainties is studied using linear matrix inequality approach. A sufficient condition Of linear matrix inequality is presented such that the closed-loop system is stable and satisfies H2 performance for all admissible uncertainties. Furthermore, the solution of the controller is given. An H2 output feedback controller is designed in the airborne dispenser pitch channel, and the simulation results show that the controller is effective.