期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
基于Group-Res2Block的智能合成语音说话人确认方法
1
作者 李菲 苏兆品 +2 位作者 王年松 杨波 张国富 《应用科学学报》 CAS CSCD 北大核心 2024年第4期709-722,共14页
针对现有说话人确认任务基于自然语音条件下并不适用于智能合成语音的问题,提出一种基于Group-Res2Block的智能合成语音说话人确认方法。首先,设计了Group-Res2Block结构,在Res2Block的基础上将当前分组与相邻前后分组进行合并形成新的... 针对现有说话人确认任务基于自然语音条件下并不适用于智能合成语音的问题,提出一种基于Group-Res2Block的智能合成语音说话人确认方法。首先,设计了Group-Res2Block结构,在Res2Block的基础上将当前分组与相邻前后分组进行合并形成新的分组,以增强说话人局部特征的上下文联系;其次,设计了并行结构的多尺度通道注意力特征融合机制,利用不同大小卷积核实现同一层级的特征在通道维度的特征选择,以获取更具表现力的说话人特征,避免信息冗余;最后,设计了串行结构的多尺度层注意力特征融合机制,构建层结构,将深浅层特征整体进行融合并赋予不同权重,以获取最优的特征表达。为验证所提出特征提取网络的有效性,构建了中英文两种智能合成语音数据集进行消融实验和对比实验。结果表明本文方法在该任务的评价指标精确度(accuracy,ACC)、等错误率(equal error rate,EER)和最小检测代价函数(minimum detection cost function,minDCF)上是最优的。此外,通过对模型泛化性能进行测试,验证了本文方法对未知智能语音算法的适用性。 展开更多
关键词 说话人确认 智能合成语音 group-res2block深度神经网络 多尺度特征 注意力机制
在线阅读 下载PDF
基于DeepLabv3+与GF-2高分辨率影像的露天煤矿区土地利用分类 被引量:21
2
作者 张成业 李飞跃 +4 位作者 李军 邢江河 杨金中 郭俊廷 杜守航 《煤田地质与勘探》 CAS CSCD 北大核心 2022年第6期94-103,共10页
遥感与深度学习为及时掌握露天煤矿区土地利用情况提供了高效率的技术手段。基于国产高分二号(GF-2)卫星高分辨率遥感影像,利用深度学习DeepLabv3+模型实现露天煤矿区土地利用识别,并与U-Net、FCN、随机森林、支持向量机、最大似然法等... 遥感与深度学习为及时掌握露天煤矿区土地利用情况提供了高效率的技术手段。基于国产高分二号(GF-2)卫星高分辨率遥感影像,利用深度学习DeepLabv3+模型实现露天煤矿区土地利用识别,并与U-Net、FCN、随机森林、支持向量机、最大似然法等方法进行对比。首先,制作高分辨率影像样本数据,通过敏感性测试确定适合研究区露天煤矿场景的样本最佳裁剪尺寸和方式;然后,训练深度神经网络DeepLabv3+模型,进行土地利用识别实验;最后,比较不同方法的识别结果。结果表明:研究区露天煤矿场景下的样本最佳裁剪尺寸为512像素×512像素,最佳裁剪方式为随机裁剪。采用的DeepLabv3+模型对露天煤矿区土地利用识别的总体精度、Kappa系数分别为80.10%、0.73,均优于U-Net、FCN、随机森林、支持向量机、最大似然法等方法的识别精度。DeepLabv3+模型的识别速度与上述5种方法保持在同一数量级,验证了DeepLabv3+模型和GF-2卫星影像在露天煤矿区土地利用识别中的可行性,对露天煤矿区生态环境监测与修复规划具有重要意义。 展开更多
关键词 露天煤矿区 土地利用 高分辨率影像 深度学习 神经网络 高分二号卫星 自动识别 识别精度
在线阅读 下载PDF
基于改进U^(2)-Net模型的混凝土结构表面裂缝检测 被引量:5
3
作者 程浩东 李怡静 +2 位作者 李玥康 胡强 王姣 《水利水电技术(中英文)》 北大核心 2024年第6期159-171,共13页
【目的】背景复杂的混凝土结构表面裂缝连续性差、识别率低,基于深度学习的裂缝检测方法存在模型参数量大的问题。【方法】为此,结合U^(2)-Net框架构建了一种聚合多尺度信息的轻量级模型U^(2)-Net_Aggregation,用于复杂背景下的裂缝特... 【目的】背景复杂的混凝土结构表面裂缝连续性差、识别率低,基于深度学习的裂缝检测方法存在模型参数量大的问题。【方法】为此,结合U^(2)-Net框架构建了一种聚合多尺度信息的轻量级模型U^(2)-Net_Aggregation,用于复杂背景下的裂缝特征学习。该模型通过增加跳跃连接,使得每个解码层均聚合该层以上所有浅层编码特征,以获得足够的特征细节,提升裂缝分割精度;利用深度可分离卷积(Depthwise Separable Convolution, DSC)对原本的残差模块(ReSidual U-blocks, RSU)进行改进,提出了新的残差模块(RSU-DSC-ECA),来降低聚合多尺度信息时带来的模型复杂度提升的问题,其中的通道注意力机制(Efficient Channel Attention, ECA)可提升模型对裂缝区域的敏感性和对复杂背景的抗干扰能力。【结果】在三组裂缝数据集上进行消融试验,改进后的模型(U^(2)-Net_Aggregation)相较于U^(2)-Net在准确率、交并比、综合评价指标上均有优异的表现。为了验证模型对复杂背景中裂缝的识别能力,利用无人机实地采集的某混凝土结构数据进行试验,其检测效果优于FCN、SegNet、U-Net和U^(2)-Net。【结论】改进后的模型相比U^(2)-Net在召回率、交并比和综合评价指标方面分别提高了4.18%、2.97%和2.03%,可借助无人机影像快速准确地检测出裂缝,为结构裂缝检测提供一种新的方法。 展开更多
关键词 混凝土结构 裂缝检测 深度学习 语义分割 U^(2)-Net 神经网络 混凝土
在线阅读 下载PDF
基于物理信息神经网络的CO_(2)羽流分布预测方法
4
作者 马先林 刘朕之 +2 位作者 湛杰 潘晓甜 李成德 《石油钻探技术》 CAS CSCD 北大核心 2024年第5期69-75,共7页
为了提高CO_(2)地质封存的有效性和安全性,需要准确预测地层中CO_(2)羽流的分布和迁移规律。为此,利用自动微分技术,将多相渗流偏微分方程约束嵌入模型的损失函数中,建立了多相渗流力学约束的CO_(2)羽流分布深度神经网络预测模型,以确... 为了提高CO_(2)地质封存的有效性和安全性,需要准确预测地层中CO_(2)羽流的分布和迁移规律。为此,利用自动微分技术,将多相渗流偏微分方程约束嵌入模型的损失函数中,建立了多相渗流力学约束的CO_(2)羽流分布深度神经网络预测模型,以确保模型预测结果既符合训练数据样本的分布规律,又严格遵守偏微分方程描述的流体渗流物理规律。为了验证模型的有效性,以枯竭油藏封存CO_(2)的实际案例为研究对象,分别应用多层感知器和长短期记忆深度神经网络构建了2个物理信息深度神经网络(PINNs)模型。研究表明,与纯数据驱动模型的预测结果相比,基于PINNs的模型具有更高的预测精度。研究结果不仅为CO_(2)地质封存项目的设计与实施提供了技术支撑,也为该技术的实际应用提供了理论依据。 展开更多
关键词 深度神经网络 物理信息神经网络 CO_(2)地质封存 CO_(2)羽流分布
在线阅读 下载PDF
基于BP神经网络的Deep Web实体识别方法 被引量:5
5
作者 徐红艳 党晓婉 +1 位作者 冯勇 李军平 《计算机应用》 CSCD 北大核心 2013年第3期776-779,共4页
针对现有实体识别方法自动化水平不高、适应性差等不足,提出一种基于反向传播(BP)神经网络的Deep Web实体识别方法。该方法将实体分块后利用反向传播神经网络的自主学习特性,将语义块相似度值作为反向传播神经网络的输入,通过训练得到... 针对现有实体识别方法自动化水平不高、适应性差等不足,提出一种基于反向传播(BP)神经网络的Deep Web实体识别方法。该方法将实体分块后利用反向传播神经网络的自主学习特性,将语义块相似度值作为反向传播神经网络的输入,通过训练得到正确的实体识别模型,从而实现对异构数据源的自动化实体识别。实验结果表明,所提方法的应用不仅能够减少实体识别中的人工干预,而且能够提高实体识别的效率和准确率。 展开更多
关键词 deep WEB 反向传播神经网络 实体识别 相似度 语义块
在线阅读 下载PDF
基于矩阵2-范数池化的卷积神经网络图像识别算法 被引量:11
6
作者 余萍 赵继生 《图学学报》 CSCD 北大核心 2016年第5期694-701,共8页
卷积神经网络中的池化操作可以实现图像变换的缩放不变性,并且对噪声和杂波有很好的鲁棒性。针对图像识别中池化操作提取局部特征时忽略了隐藏在图像中的能量信息的问题,根据图像的能量与矩阵的奇异值之间的关系,并且考虑到图像信息的... 卷积神经网络中的池化操作可以实现图像变换的缩放不变性,并且对噪声和杂波有很好的鲁棒性。针对图像识别中池化操作提取局部特征时忽略了隐藏在图像中的能量信息的问题,根据图像的能量与矩阵的奇异值之间的关系,并且考虑到图像信息的主要能量集中于奇异值中数值较大的几个,提出一种矩阵2-范数池化方法。首先将前一卷积层特征图划分为若干个互不重叠的子块图像,然后分别计算子块图像矩阵的奇异值,将最大奇异值作为每个池化区域的统计结果。利用5种不同的池化方法在Cohn-Kanade、Caltech-101、MNIST和CIFAR-10数据集上进行了大量实验,实验结果表明,相比较于其他方法,该方法具有更好地识别效果和稳健性。 展开更多
关键词 深度学习 卷积神经网络 矩阵2-范数 池化 奇异值
在线阅读 下载PDF
一种改进R(2+1)D网络的暴力行为检测方法 被引量:1
7
作者 王勇 靳伟昭 +1 位作者 冯伟 全英汇 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2022年第2期155-163,217,共10页
公共安全中复杂的暴力行为检测具有重要的研究价值。传统的研究方法主要基于手工设计的特征,泛化能力较差,现有的深度学习网络模型泛化能力强但准确率较低。针对上述问题,提出了一个结合R(2+1)D改进网络和密集连接思想的暴力行为检测方... 公共安全中复杂的暴力行为检测具有重要的研究价值。传统的研究方法主要基于手工设计的特征,泛化能力较差,现有的深度学习网络模型泛化能力强但准确率较低。针对上述问题,提出了一个结合R(2+1)D改进网络和密集连接思想的暴力行为检测方法。由于原R(2+1)D残差模块支路中的步长为2的卷积操作忽略了特征图的3/4,所以将其优化为池化操作和步长为1的卷积操作。本实验的数据集共有1500个视频样本,具体包括曲棍球比赛数据集和自制数据集。实验结果证明,改进后R(2+1)D网络相比原网络准确率分别提高了约2.30%和1.00%。另外,引入密集连接思想,将残差模块中的不同卷积层级间建立连接,使残差块中的卷积层输出特征图可重复使用,这在一定程度上减轻了训练过程中梯度消散的问题。通过在相同数据集上进行测试,发现改进后(2+1)D网络相比传统的方法,检测精度进一步提升了约1.47%和0.93%。因此,在公开的经典暴力行为检测数据集上的实验证明,相对于传统的3种网络学习方法,该算法能够更好地表示暴力行为信息,是一种更加简单有效的暴力行为检测方法。 展开更多
关键词 暴力行为检测 (2+1)D密集残差块 残差网络 深度学习
在线阅读 下载PDF
Sentinel-2/MSI深度学习超分辨率重建及河湖水质遥感反演 被引量:7
8
作者 王世瑞 沈芳 魏小岛 《遥感信息》 CSCD 北大核心 2023年第3期16-24,共9页
针对Sentinel-2影像低空间分辨率(20 m、60 m)波段混合像元会降低内陆河湖水质反演精度的问题,提出了一种通过深度学习超分辨率重建进行水质反演的方法。首先,引入残差神经网络超分辨率重建算法,结合迁移学习方法与卷积注意模块对该算... 针对Sentinel-2影像低空间分辨率(20 m、60 m)波段混合像元会降低内陆河湖水质反演精度的问题,提出了一种通过深度学习超分辨率重建进行水质反演的方法。首先,引入残差神经网络超分辨率重建算法,结合迁移学习方法与卷积注意模块对该算法进行改进,通过对比评估其他算法的重建精度,发现改进算法主客观评价均为最佳。接着,以上海市内陆河湖为研究区域,使用改进算法对低分辨率波段重建至10 m,结合实测水质参数及影像重建前后的光谱特征波段,利用多种回归算法构建水质反演模型进行对比。结果表明:深度学习超分辨率重建模型可有效提升水质参数的遥感反演精度;深度神经网络模型精度较高(R 2>0.67),可实现更精细化制图。 展开更多
关键词 Sentinel-2 深度学习 超分辨率重建 水质 深度神经网络 河流和湖泊
在线阅读 下载PDF
2型糖尿病患者亚临床动脉粥样硬化的多层人工神经网络分类预测模型的构建 被引量:6
9
作者 汪奇 刘尚全 《中国全科医学》 CAS 北大核心 2021年第36期4612-4617,共6页
背景现阶段我国2型糖尿病(T2DM)患者数量较多,亟须开发简单、有效的亚临床动脉粥样硬化发生风险评估工具。目的依据多项指标构建预测T2DM患者亚临床动脉粥样硬化的多层人工神经网络分类模型并验证其预测准确性。方法选取2010年1月至2016... 背景现阶段我国2型糖尿病(T2DM)患者数量较多,亟须开发简单、有效的亚临床动脉粥样硬化发生风险评估工具。目的依据多项指标构建预测T2DM患者亚临床动脉粥样硬化的多层人工神经网络分类模型并验证其预测准确性。方法选取2010年1月至2016年12月在安徽医科大学第三附属医院住院的T2DM患者3627例,均行双侧颈动脉彩色多普勒超声检查,其中检出亚临床动脉粥样硬化者2196例(观察组),未检出亚临床动脉粥样硬化者1431例(对照组)。比较两组患者一般资料、实验室检查指标及脂肪肝发生情况并据此构建多层人工神经网络分类模型。从3627例T2DM患者中随机选取3027例患者作为训练集,其余600例患者作为测试集,验证多层人工神经网络分类模型的预测准确性。结果两组患者体质指数、舒张压、有吸烟史者所占比例、有饮酒史者所占比例、饮酒量、直接胆红素、总蛋白、天冬氨酸氨基转移酶、血尿酸、三酰甘油、低密度脂蛋白胆固醇/高密度脂蛋白胆固醇比值、促甲状腺激素、游离三碘甲状腺原氨酸、游离甲状腺素、糖化血红蛋白、空腹血糖、空腹C肽、HOMA-C肽指数、严重脂肪肝所占比例比较,差异无统计学意义(P>0.05);观察组患者女性所占比例、收缩压、有高血压病史者所占比例、球蛋白、总胆汁酸、尿素氮、血肌酐、胱抑素C、尿微量白蛋白排泄率、总胆固醇、低密度脂蛋白胆固醇、高密度脂蛋白胆固醇、白细胞计数、中性粒细胞计数、糖化血红蛋白、空腹血糖高于对照组,年龄、吸烟量大于对照组,病程、吸烟时间、饮酒时间长于对照组,有糖尿病家族史者所占比例、总胆红素、间接胆红素、白蛋白、丙氨酸氨基转移酶、肾小球滤过率、三酰甘油/高密度脂蛋白胆固醇比值、淋巴细胞计数、红细胞计数、血红蛋白、脂肪肝发生率低于对照组(P<0.05)。结合临床实际,将上述49项指标作为输入变量构建多层人工神经网络分类模型;在测试集上,Logistic模型预测T2DM患者亚临床动脉粥样硬化的准确率为59%,而多层人工神经网络分类模型隐藏层数为3时预测T2DM患者亚临床动脉粥样硬化的准确率为76%。结论本研究构建的多层人工神经网络分类模型对T2DM患者亚临床动脉粥样硬化的预测准确率较高,可作为T2DM患者亚临床动脉粥样硬化发生风险评估工具。 展开更多
关键词 糖尿病 2 动脉粥样硬化 亚临床动脉粥样硬化 神经网络 计算机 深度学习 模型 理论
在线阅读 下载PDF
基于GL_(2)-DNN的面向语句覆盖的程序缺陷定位方法
10
作者 彭玲 刘振宇 彭敏 《计算机应用与软件》 北大核心 2023年第1期46-52,155,共8页
针对现有的基于深度神经网络的缺陷定位方法中参数设定不便,结合遗传算法的全局随机搜索能力、L_(2)正则化防止模型过拟合与深度神经网络学习复杂非线性能力,提出一种基于GL_(2)-DNN模型的程序静态缺陷定位算法。通过遗传算法寻找深度... 针对现有的基于深度神经网络的缺陷定位方法中参数设定不便,结合遗传算法的全局随机搜索能力、L_(2)正则化防止模型过拟合与深度神经网络学习复杂非线性能力,提出一种基于GL_(2)-DNN模型的程序静态缺陷定位算法。通过遗传算法寻找深度神经网络最优超参数;将所得语句覆盖信息与状态值输入深度神经网络计算每条可执行语句的可疑度值;根据可疑度值由高往低排序进行缺陷定位。选用Siemens Suite数据集作为实验样本,将GL_(2)-DNN与五种缺陷定位算法进行实验对比,结果表明,该算法能更精确地定位缺陷,计算效率也有所提升。 展开更多
关键词 遗传算法 L_(2)正则化 深度神经网络 程序静态缺陷定位 语句覆盖信息
在线阅读 下载PDF
结合深度神经网络的大气压脉冲放电转化CO_(2)研究
11
作者 王绪成 张远涛 《石油学报(石油加工)》 EI CAS CSCD 北大核心 2023年第5期1013-1024,共12页
为了提高等离子数值模拟在放电等离子体转化利用CO_(2)研究中的计算效率,提出了采用具有多个隐藏层的深度神经网络(DNN)来研究大气压脉冲放电转化CO_(2)的放电特性与等离子体化学性质,经过训练的DNN能够极大地提高计算效率。DNN预测结... 为了提高等离子数值模拟在放电等离子体转化利用CO_(2)研究中的计算效率,提出了采用具有多个隐藏层的深度神经网络(DNN)来研究大气压脉冲放电转化CO_(2)的放电特性与等离子体化学性质,经过训练的DNN能够极大地提高计算效率。DNN预测结果表明:当外加电压幅值不变时,增加脉冲上升率可以提高放电电流密度和击穿电压,同时增强鞘层区域的电场;脉冲坪区宽度的增加会提高介质板表面电荷密度,增强反向感应电场的强度,进而提高脉冲下降阶段的放电电流密度。此外,提高脉冲上升率和坪区宽度都会提高CO、O_(2)等产物的密度,导致CO_(2)转化率的增加。基于有限的训练集,DNN能快捷、准确地给出海量的数据以揭示CO_(2)放电的演化特性与转化规律,这为研究放电等离子体技术转化CO_(2)提供了新的计算工具。 展开更多
关键词 等离子体 深度神经网络 CO_(2)转化 脉冲放电 流体模拟 脉冲上升率 坪区宽度
在线阅读 下载PDF
基于CBAM-CNN的电力系统暂态电压稳定评估 被引量:3
12
作者 李欣 柳圣池 +3 位作者 李新宇 陈德秋 鲁玲 郭攀锋 《电力系统及其自动化学报》 CSCD 北大核心 2024年第4期59-67,75,共10页
为进一步提高电力系统暂态电压稳定评估模型的特征提取能力和模型在系统拓扑结构发生变化时的适应性,提出一种将改进的卷积神经网络与迁移学习相结合的方法。首先,在卷积神经网络的卷积层后插入卷积块注意力模块,对输入的数据从通道和... 为进一步提高电力系统暂态电压稳定评估模型的特征提取能力和模型在系统拓扑结构发生变化时的适应性,提出一种将改进的卷积神经网络与迁移学习相结合的方法。首先,在卷积神经网络的卷积层后插入卷积块注意力模块,对输入的数据从通道和空间两个独立的维度依次提取特征,提高卷积神经网络对系统暂态电压状态的识别能力。然后,将该模块与微调技术相结合,提高模型在系统拓扑结构改变时的在线更新速度。最后,算例分析验证了所提模型的有效性。 展开更多
关键词 深度学习 卷积神经网络 暂态电压稳定评估 卷积块注意力模块 迁移学习
在线阅读 下载PDF
基于深度学习的露天铀矿可爆性智能分级模型研究 被引量:2
13
作者 刘玉龙 扶海鹰 +5 位作者 黄磊 凌阳 连檬 李峰 谢烽 丁德馨 《爆破》 CSCD 北大核心 2024年第3期240-247,共8页
湖山铀矿属于特大型露天铀矿山,目前矿山爆破生产为“一次设计,长期使用”,故存在爆破参数缺乏动态调整、炸药单耗高、爆破效果不理想的问题,对此,可通过对爆破区块进行动态可爆性分级管理并反馈调控爆破设计来解决。本研究利用该矿爆... 湖山铀矿属于特大型露天铀矿山,目前矿山爆破生产为“一次设计,长期使用”,故存在爆破参数缺乏动态调整、炸药单耗高、爆破效果不理想的问题,对此,可通过对爆破区块进行动态可爆性分级管理并反馈调控爆破设计来解决。本研究利用该矿爆破区块的生产历史大数据,提出了采用钻孔率(α)、炸药单耗(β)和块度指标(γ)计算区块爆破性指数K的方法,并根据爆破性指数K的值对历史爆破区块的可爆性进行分级;再以爆破区块的单轴抗压强度(UCS)、矿石的质量指标(RQD)和矿体的地质强度指标(GSI)作为可爆性指标,建立了可爆性指标与可爆性等级相对应的数据集;然后构建了深度学习神经网络模型,并以可爆性指标作为输入,以可爆性等级作为输出对构建的深度学习神经网络模型进行了训练;最后通过现场试验验证了训练后的模型对可爆性等级预测的可靠性和准确性,同时优化了爆破设计和爆破效果。研究结果表明:建立的深度学习神经网络模型可用于爆破区块的可爆性分级与爆破效果优化。 展开更多
关键词 湖山铀矿 可爆性智能分级 深度学习 神经网络 区块爆破
在线阅读 下载PDF
边缘侧神经网络块粒度领域自适应技术研究 被引量:1
14
作者 辛高枫 刘玉潇 +2 位作者 张青龙 韩锐 刘驰 《计算机工程与科学》 CSCD 北大核心 2024年第8期1361-1371,共11页
深度神经网络在边缘设备上运行时会面临模型缩放和域自适应2个挑战,现有的模型缩放技术和无监督在线域自适应技术存在缩放粒度粗、缩放空间小和在线域自适应时间长的问题。针对这2个挑战,提出一种块粒度的模型缩放和域自适应训练方法Edg... 深度神经网络在边缘设备上运行时会面临模型缩放和域自适应2个挑战,现有的模型缩放技术和无监督在线域自适应技术存在缩放粒度粗、缩放空间小和在线域自适应时间长的问题。针对这2个挑战,提出一种块粒度的模型缩放和域自适应训练方法EdgeScaler,它包括离线和在线2个阶段。针对模型缩放挑战,离线阶段能够从各种DNN中检测和抽取块,并将其转换为多个派生块;在线阶段基于块和块之间的组合,提供大规模的缩放空间,解决模型缩放问题。针对域自适应挑战,设计了一种针对于块的残差Adapter,在离线阶段将其插入块中;在线阶段当新的目标域到来时,对所有的Adapter进行训练,解决块粒度缩放空间中所有选项的域自适应问题。在真实的边缘设备Jetson TX2上的测试结果表明,在提供大规模缩放选项的基础上,所提方法可以将域自适应训练时间平均减少85.14%,训练能耗平均减少84.1%。 展开更多
关键词 深度神经网络 边缘设备 弹性缩放 域自适应
在线阅读 下载PDF
基于深度学习的污损指纹识别研究 被引量:18
15
作者 吴震东 王雅妮 章坚武 《电子与信息学报》 EI CSCD 北大核心 2017年第7期1585-1591,共7页
随着社会信息化水平的提高及不稳定因素的增加,人们迫切需要更加可靠的识别技术对身份进行认证。因此,利用生物特征进行鉴定已成为时下热潮。其中的指纹识别更是因其方便性和可靠性受到普遍认同。传统的指纹识别方法基于特征点比对寻求... 随着社会信息化水平的提高及不稳定因素的增加,人们迫切需要更加可靠的识别技术对身份进行认证。因此,利用生物特征进行鉴定已成为时下热潮。其中的指纹识别更是因其方便性和可靠性受到普遍认同。传统的指纹识别方法基于特征点比对寻求相似性,此种方法特征点寻找容易出错,且随着指纹的模糊、破坏、污损或是其他问题,均会使识别率明显降低。针对这些问题,该文提出基于深度卷积神经网络(CNN)的CBF-FFPF(Central Block Fingerprint and Fuzzy Feature Points Fingerprint)算法对污损指纹图像进行分类识别。CBF-FFPF算法提取指纹中心点分块图像及特征点模糊化图,合并后输入CNN网络,进行指纹深层特征识别。将该算法与基于主成分分析(KPCA),超限学习机(ELM)和k近邻分类器(KNN)的指纹识别算法进行比较,实验结果表明,所提出的CBF-FFPF算法对污损指纹识别有更高的识别率和更好的鲁棒性。 展开更多
关键词 指纹识别 卷积神经网络 分块指纹 指纹深层特征.
在线阅读 下载PDF
基于联合分量灰度化算法和深度学习的玻璃绝缘子目标识别算法 被引量:14
16
作者 黄新波 高玉菡 +3 位作者 张烨 赵隆 伍逸群 孙苏珍 《电力自动化设备》 EI CSCD 北大核心 2022年第4期203-209,共7页
针对相近色干扰、不同光照条件下玻璃绝缘子颜色特征不明显而无法准确识别的问题,提出一种基于联合分量灰度化算法和深度学习的玻璃绝缘子目标识别算法。首先,提出一种联合分量灰度化算法,通过补偿玻璃绝缘子目标区域的颜色特征实现目... 针对相近色干扰、不同光照条件下玻璃绝缘子颜色特征不明显而无法准确识别的问题,提出一种基于联合分量灰度化算法和深度学习的玻璃绝缘子目标识别算法。首先,提出一种联合分量灰度化算法,通过补偿玻璃绝缘子目标区域的颜色特征实现目标增强;然后,在均匀分块的基础上,采用动态分块阈值进行玻璃绝缘子图像粗分割,并结合玻璃绝缘子的颜色和空间信息等多尺度高维特征,提出一种双尺度分类卷积神经网络算法实现玻璃绝缘子图像细分割;最后,将细分割得到的所有子图像进行合并,实现复杂背景下玻璃绝缘子目标的准确识别。实验结果表明,所提算法能对图像中存在相近色干扰、光照变化影响的玻璃绝缘子目标进行精准识别,且其在Dice参数、杰卡德系数2项识别指标上均达到90%以上,平均识别准确率高达92%。 展开更多
关键词 玻璃绝缘子 联合分量灰度化算法 动态分块阈值分割 双尺度分类卷积神经网络 深度学习
在线阅读 下载PDF
基于混合注意力机制的动态人脸表情识别 被引量:4
17
作者 刘希未 宫晓燕 +4 位作者 赵红霞 边思宇 邵帅 戴亚平 代文鑫 《计算机应用》 CSCD 北大核心 2023年第S01期1-7,共7页
针对自然环境中存在人脸遮挡、姿势变化等复杂因素,以及卷积神经网络(CNN)中的卷积滤波器由于空间局部性无法学习大多数神经层中不同面部区域之间的长程归纳偏差的问题,提出一种用于动态人脸表情识别(DFER)的混合注意力机制模型(HA-Mode... 针对自然环境中存在人脸遮挡、姿势变化等复杂因素,以及卷积神经网络(CNN)中的卷积滤波器由于空间局部性无法学习大多数神经层中不同面部区域之间的长程归纳偏差的问题,提出一种用于动态人脸表情识别(DFER)的混合注意力机制模型(HA-Model),以提升DFER的鲁棒性和准确性。HA-Model由空间特征提取和时序特征处理两部分组成:空间特征提取部分通过两种注意力机制——Transformer和包含卷积块注意力模块(CBAM)的网格注意力模块,引导网络从空间角度学习含有遮挡、姿势变化的鲁棒面部特征并关注人脸局部显著特征;时序特征处理部分通过Transformer引导网络学习高层语义特征的时序联系,用于学习人脸表情特征的全局表示。实验结果表明,HA-Model在DFEW和AFEW基准上的准确率分别达到了67.27%和50.41%,验证了HA-Model可以有效提取人脸特征并提升动态人脸表情识别的精度。 展开更多
关键词 动态人脸表情识别 深度学习 卷积神经网络 注意力机制 TRANSFORMER 卷积块注意力模块
在线阅读 下载PDF
基于MDM-ResNet的脑肿瘤分类方法 被引量:8
18
作者 夏景明 邢露萍 +1 位作者 谈玲 宣大伟 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2022年第2期212-219,共8页
脑肿瘤是世界上最致命的癌症之一.由于脑肿瘤的多样性,其图像分类成为了当代研究的热点.近年来,深度神经网络(DNN)常用于医学图像分类,但随着深度的增加网络会出现梯度消失和过拟合的问题,而残差网络(ResNet)通过引入恒等映射可以缓解... 脑肿瘤是世界上最致命的癌症之一.由于脑肿瘤的多样性,其图像分类成为了当代研究的热点.近年来,深度神经网络(DNN)常用于医学图像分类,但随着深度的增加网络会出现梯度消失和过拟合的问题,而残差网络(ResNet)通过引入恒等映射可以缓解这些问题.因此,本文基于ResNet提出了一种MDM-ResNet网络,该网络由多尺寸卷积核模块(Multi-size convolution kernel module)、双通道池化层(Dual-channel pooling layer)和多深度融合残差块(Multi-depth fusion residual block)组成.本文实验在Figshare数据集上展开,采用数据增强操作对图像进行预处理,并利用5倍交叉验证方法对网络性能进行评估.最终实验结果表明MDM-ResNet能够对脑膜瘤(Meningioma)、胶质瘤(Glioma)和垂体瘤(Pituitary tumor)进行有效分类. 展开更多
关键词 脑肿瘤 深度神经网络(DNN) 残差网络(ResNet) 多尺寸卷积核模块 双通道池化层 多深度融合残差块
在线阅读 下载PDF
基于多层注意力机制的图文双模态情感分析 被引量:6
19
作者 周婷 杨长春 《计算机工程与设计》 北大核心 2023年第6期1853-1859,共7页
针对在图文双模态情感分析任务中,容易忽略通道信息,造成关键信息遗漏以及特征融合不充分、不考虑各模态权重的问题,提出一种基于多层注意力机制的图文双模态情感分析模型(multi-level attention mechanism fusion,MAMF)。使用BERT模型... 针对在图文双模态情感分析任务中,容易忽略通道信息,造成关键信息遗漏以及特征融合不充分、不考虑各模态权重的问题,提出一种基于多层注意力机制的图文双模态情感分析模型(multi-level attention mechanism fusion,MAMF)。使用BERT模型和双向长短时记忆网络结合的方式获得文本特征;在图片特征抽取中,引入卷积注意力模块(convolutional block attention module,CBAM)生成视觉注意特征;利用视觉引导的文本注意力和文本引导的视觉注意力重构特征向量,在特征融合中使用注意力机制对不同模态加权以区别其影响,最后输出进行分类。在多模态情感数据集MVSA上的实验验证了模型的有效性。 展开更多
关键词 图文情感分析 深度学习 卷积神经网络 卷积注意力模块 注意力机制 模态融合 多模态识别
在线阅读 下载PDF
利用卷积神经网络分类乳腺癌病理图像 被引量:13
20
作者 于凌涛 夏永强 +2 位作者 闫昱晟 王鹏程 曹伟 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2021年第4期567-573,共7页
为了解决乳腺病理图像分类准确率低,耗时费力的问题,本文提出了利用卷积神经网络(CNN)对乳腺病理图像进行分类的方法。利用该方法将病理图像快速、自动划分为良性和恶性2类。采用基于Inceptionv3架构的卷积神经网络模型和迁移学习算法... 为了解决乳腺病理图像分类准确率低,耗时费力的问题,本文提出了利用卷积神经网络(CNN)对乳腺病理图像进行分类的方法。利用该方法将病理图像快速、自动划分为良性和恶性2类。采用基于Inceptionv3架构的卷积神经网络模型和迁移学习算法进行病理图像特征提取;利用全连接层神经网络和SoftMax函数进行图像分类。同时针对高分辨率图像提出了图像分块化思想,将每块的分类概率通过加和、乘积、取最大值3种算法进行整合,得出图像最终分类结果。利用BreaKHis公共数据集对所提出的分类方法进行了实验验证。结果显示对于4个放大系数的图像分类准确率分别达到约95.0%、95.1%、94.1%和92.3%,该方法有效提高了乳腺癌病理图像分类准确率。 展开更多
关键词 乳腺癌 病理图像 卷积神经网络 迁移学习 深度学习 图像分块 融合算法 图像分类
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部