Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department t...Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department to have sufficient time to formulate corresponding traffic flow control measures.In hence,it is meaningful to establish an accurate short-term traffic flow method and provide reference for peak traffic flow warning.This paper proposed a new hybrid model for traffic flow forecasting,which is composed of the variational mode decomposition(VMD)method,the group method of data handling(GMDH)neural network,bi-directional long and short term memory(BILSTM)network and ELMAN network,and is optimized by the imperialist competitive algorithm(ICA)method.To illustrate the performance of the proposed model,there are several comparative experiments between the proposed model and other models.The experiment results show that 1)BILSTM network,GMDH network and ELMAN network have better predictive performance than other single models;2)VMD can significantly improve the predictive performance of the ICA-GMDH-BILSTM-ELMAN model.The effect of VMD method is better than that of EEMD method and FEEMD method.To conclude,the proposed model which is made up of the VMD method,the ICA method,the BILSTM network,the GMDH network and the ELMAN network has excellent predictive ability for traffic flow series.展开更多
针对我国当前经济、政策变动的大背景,提出了采用数据分组处理方法GMDH(group method of data handling)结合多结构突变理论,实现时序突变点自动搜索建模,建立了中长期负荷预测的GMDH多结构自动搜索模型。该模型能够客观准确地搜索时间...针对我国当前经济、政策变动的大背景,提出了采用数据分组处理方法GMDH(group method of data handling)结合多结构突变理论,实现时序突变点自动搜索建模,建立了中长期负荷预测的GMDH多结构自动搜索模型。该模型能够客观准确地搜索时间序列中的所有突变点,并充分利用突变点信息修正由于经济环境和突发事件引起的预测偏差,大大提高了传统时序外推预测模型的精度。华东地区的实际算例结果表明了该模型的有效性。展开更多
针对传统数据处理组合方法(Group method of data handling,GMDH)网络建模用最小二乘法辨识参数会导致模型预测效果不理想的问题,将模糊推理模型引入GMDH网络,以取代传统GMDH网络的部分描述(即完全二元二次多项式),提出了一种基于模糊G...针对传统数据处理组合方法(Group method of data handling,GMDH)网络建模用最小二乘法辨识参数会导致模型预测效果不理想的问题,将模糊推理模型引入GMDH网络,以取代传统GMDH网络的部分描述(即完全二元二次多项式),提出了一种基于模糊GMDH网络的交通流量预测模型。计算机仿真结果表明,该模型预测平均相对误差仅为2.31%,小于传统GMDH网络模型预测平均相对误差3.35%,说明了该模型是有效的。展开更多
针对目标属性识别的特点,建立了基于粗糙集(Rough Sets,RS)的数据分组处理(GroupMethod of Data Handling,GMDH)神经网络分类模型。该模型较好地解决了采用高维数据集训练神经网络效率低,神经网络结构规模较大的问题。同时为了提高高维...针对目标属性识别的特点,建立了基于粗糙集(Rough Sets,RS)的数据分组处理(GroupMethod of Data Handling,GMDH)神经网络分类模型。该模型较好地解决了采用高维数据集训练神经网络效率低,神经网络结构规模较大的问题。同时为了提高高维数据集合的属性约简效率,改进了集合近似质量属性约简算法。最后,通过与BP(Back-Propagation,BP)神经网络分类能力的仿真对比,结果表明,基于粗糙集的数据分组处理神经网络分类模型分类能力优于BP神经网络模型,满足现代防空作战对目标属性识别的需求,基于快速求核和集合近似质量的属性约简算法快速有效。展开更多
基金Project(61873283)supported by the National Natural Science Foundation of ChinaProject(KQ1707017)supported by the Changsha Science&Technology Project,ChinaProject(2019CX005)supported by the Innovation Driven Project of the Central South University,China。
文摘Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department to have sufficient time to formulate corresponding traffic flow control measures.In hence,it is meaningful to establish an accurate short-term traffic flow method and provide reference for peak traffic flow warning.This paper proposed a new hybrid model for traffic flow forecasting,which is composed of the variational mode decomposition(VMD)method,the group method of data handling(GMDH)neural network,bi-directional long and short term memory(BILSTM)network and ELMAN network,and is optimized by the imperialist competitive algorithm(ICA)method.To illustrate the performance of the proposed model,there are several comparative experiments between the proposed model and other models.The experiment results show that 1)BILSTM network,GMDH network and ELMAN network have better predictive performance than other single models;2)VMD can significantly improve the predictive performance of the ICA-GMDH-BILSTM-ELMAN model.The effect of VMD method is better than that of EEMD method and FEEMD method.To conclude,the proposed model which is made up of the VMD method,the ICA method,the BILSTM network,the GMDH network and the ELMAN network has excellent predictive ability for traffic flow series.
文摘针对我国当前经济、政策变动的大背景,提出了采用数据分组处理方法GMDH(group method of data handling)结合多结构突变理论,实现时序突变点自动搜索建模,建立了中长期负荷预测的GMDH多结构自动搜索模型。该模型能够客观准确地搜索时间序列中的所有突变点,并充分利用突变点信息修正由于经济环境和突发事件引起的预测偏差,大大提高了传统时序外推预测模型的精度。华东地区的实际算例结果表明了该模型的有效性。
文摘针对传统数据处理组合方法(Group method of data handling,GMDH)网络建模用最小二乘法辨识参数会导致模型预测效果不理想的问题,将模糊推理模型引入GMDH网络,以取代传统GMDH网络的部分描述(即完全二元二次多项式),提出了一种基于模糊GMDH网络的交通流量预测模型。计算机仿真结果表明,该模型预测平均相对误差仅为2.31%,小于传统GMDH网络模型预测平均相对误差3.35%,说明了该模型是有效的。
文摘针对目标属性识别的特点,建立了基于粗糙集(Rough Sets,RS)的数据分组处理(GroupMethod of Data Handling,GMDH)神经网络分类模型。该模型较好地解决了采用高维数据集训练神经网络效率低,神经网络结构规模较大的问题。同时为了提高高维数据集合的属性约简效率,改进了集合近似质量属性约简算法。最后,通过与BP(Back-Propagation,BP)神经网络分类能力的仿真对比,结果表明,基于粗糙集的数据分组处理神经网络分类模型分类能力优于BP神经网络模型,满足现代防空作战对目标属性识别的需求,基于快速求核和集合近似质量的属性约简算法快速有效。