In this paper, we calculated the seismic pattern of instrumental recorded small and moderate earthquakes near the epicenter of the 1303 Hongtong M=8 earthquake, Shanxi Province. According to the spatial distribution o...In this paper, we calculated the seismic pattern of instrumental recorded small and moderate earthquakes near the epicenter of the 1303 Hongtong M=8 earthquake, Shanxi Province. According to the spatial distribution of small and moderate earthquakes, 6 seismic dense zones are delineated. Temporal distribution of ML2 earthquakes since 1970 in each seismic dense zone has been analyzed. Based on temporal distribution characteristics and historical earthquake activity, three types of seismicities are proposed. The relationship between seismic types and crustal medium is analyzed. The mechanism of three types is discussed. Finity of strong earthquake recurrence is pro-posed. Seismic hazard in mid-long term and diversity of earthquake disaster in Shanxi seismic belt are discussed.展开更多
Physical model tests have been conducted by various researchers to investigate fault rupture propagation and ground deformation induced by bedrock faulting. However, the effects of pre-existing fracture on ground defo...Physical model tests have been conducted by various researchers to investigate fault rupture propagation and ground deformation induced by bedrock faulting. However, the effects of pre-existing fracture on ground deformation are not fully understood. In this work, six centrifuge tests are reported to investigate the influence of pre-existing fracture on ground deformation induced by normal faulting in sand, clay and nine-layered soil with interbedded sand and clay layers. Shear box tests were conducted to develop a filter paper technique, which was adopted in soil model preparation to simulate the effects of pre-existing fracture in centrifuge tests. Centrifuge test results show that ground deformation mechanism in clay, sand and nine-layered soil strata is classified as a stationary zone, a shearing zone and a rigid body zone. Inclination of the strain localization is governed by the dilatancy of soil material. Moreover, the pre-existing fracture provides a preferential path for ground deformation and results in a scarp at the ground surface in sand. On the contrary, fault ruptures are observed at the ground surface in clay and nine-layered soil strata.展开更多
By processing and analyzing geodetic data of vertical deformation, fault deformation and horizontal deformation by GPS in Gansu Ningxia Qinghai area and by comparing them with geological structures and many medium to ...By processing and analyzing geodetic data of vertical deformation, fault deformation and horizontal deformation by GPS in Gansu Ningxia Qinghai area and by comparing them with geological structures and many medium to strong earthquake activities in this area, some features of recent tectonic deformation anomaly and the development of medium to strong earthquakes are studied. The results show that: ①Near the main faults tectonic deformations are relatively large. The amount of vertical movement and the deformation status evolve with time. The horizontal movement and deformation show obvious compressional strike slip character. ②The dominant stress of tectonic deformation and seismic development in this area comes from the persistent northeastward compression of Qinghai Tibet block;The time spatial distribution evolution of tectonic deformation and seismic activities are closely related to dynamic evolution of block motion and regional tectonic stress field. ③The abnormal uplift and high gradient deformation belts and remarkable fault deformation anormaly on the borders of regional tectonic blocks are indicators of developing moderate to strong earthquakes but earthquakes may not necessarily take place in the position of maxium deformation, it usually occurred in the region where fault deformation anormaly shows “trend accumulation acceleration turn ” variation character or nearby. On the basis of above study, a preliminary prediction for strong earthquake risk in this area is given.展开更多
Continuous Rapid Deformation (CRD) may be an important precursor before some strong earthquakes with magnitude greater than \%M\%s5.0. This paper shows some characteristics of CRD, and proposes a method for identifyin...Continuous Rapid Deformation (CRD) may be an important precursor before some strong earthquakes with magnitude greater than \%M\%s5.0. This paper shows some characteristics of CRD, and proposes a method for identifying precursory CRD that is closely related to the process of earthquake preparation. From the deformation data in Yunnan Sichan provinces, we obtained the tilt and strain thresholds of 4.5ms/d and 5 ×10 -7 /d, respectively. Compared the tilt CRD in this region before 9 earthquakes (short term fore shocks and after shocks not included) with magnitude greater than 5.8 in the period from January of 1990 to May of 2001, we found that 8 earthquakes occurred within 5 months after the CRD with a duration of more than 20 days and a tilt velocity of more than 4.5ms/d without false prediction, but with one failure in earthquake prediction. For the strain CRD, 5 earthquakes occurred after the CRD; there was no false prediction, but 4 earthquakes unpredicted. We have tried to increase the thresholds, but found either the failure ratio or the rate of false prediction increased, while the success rate not obvious increased.展开更多
基金Key Science Research Project (100501-05-09) from China Earthquake Administration during the tenth Five-year Plan.
文摘In this paper, we calculated the seismic pattern of instrumental recorded small and moderate earthquakes near the epicenter of the 1303 Hongtong M=8 earthquake, Shanxi Province. According to the spatial distribution of small and moderate earthquakes, 6 seismic dense zones are delineated. Temporal distribution of ML2 earthquakes since 1970 in each seismic dense zone has been analyzed. Based on temporal distribution characteristics and historical earthquake activity, three types of seismicities are proposed. The relationship between seismic types and crustal medium is analyzed. The mechanism of three types is discussed. Finity of strong earthquake recurrence is pro-posed. Seismic hazard in mid-long term and diversity of earthquake disaster in Shanxi seismic belt are discussed.
基金Project supported by the Earthquake Administration of Beijing Municipality and the National Development and Reform Commission of ChinaProject(IRT1125) supported by the program for Changjiang Scholars and Innovative Research Team in University, China
文摘Physical model tests have been conducted by various researchers to investigate fault rupture propagation and ground deformation induced by bedrock faulting. However, the effects of pre-existing fracture on ground deformation are not fully understood. In this work, six centrifuge tests are reported to investigate the influence of pre-existing fracture on ground deformation induced by normal faulting in sand, clay and nine-layered soil with interbedded sand and clay layers. Shear box tests were conducted to develop a filter paper technique, which was adopted in soil model preparation to simulate the effects of pre-existing fracture in centrifuge tests. Centrifuge test results show that ground deformation mechanism in clay, sand and nine-layered soil strata is classified as a stationary zone, a shearing zone and a rigid body zone. Inclination of the strain localization is governed by the dilatancy of soil material. Moreover, the pre-existing fracture provides a preferential path for ground deformation and results in a scarp at the ground surface in sand. On the contrary, fault ruptures are observed at the ground surface in clay and nine-layered soil strata.
文摘By processing and analyzing geodetic data of vertical deformation, fault deformation and horizontal deformation by GPS in Gansu Ningxia Qinghai area and by comparing them with geological structures and many medium to strong earthquake activities in this area, some features of recent tectonic deformation anomaly and the development of medium to strong earthquakes are studied. The results show that: ①Near the main faults tectonic deformations are relatively large. The amount of vertical movement and the deformation status evolve with time. The horizontal movement and deformation show obvious compressional strike slip character. ②The dominant stress of tectonic deformation and seismic development in this area comes from the persistent northeastward compression of Qinghai Tibet block;The time spatial distribution evolution of tectonic deformation and seismic activities are closely related to dynamic evolution of block motion and regional tectonic stress field. ③The abnormal uplift and high gradient deformation belts and remarkable fault deformation anormaly on the borders of regional tectonic blocks are indicators of developing moderate to strong earthquakes but earthquakes may not necessarily take place in the position of maxium deformation, it usually occurred in the region where fault deformation anormaly shows “trend accumulation acceleration turn ” variation character or nearby. On the basis of above study, a preliminary prediction for strong earthquake risk in this area is given.
文摘Continuous Rapid Deformation (CRD) may be an important precursor before some strong earthquakes with magnitude greater than \%M\%s5.0. This paper shows some characteristics of CRD, and proposes a method for identifying precursory CRD that is closely related to the process of earthquake preparation. From the deformation data in Yunnan Sichan provinces, we obtained the tilt and strain thresholds of 4.5ms/d and 5 ×10 -7 /d, respectively. Compared the tilt CRD in this region before 9 earthquakes (short term fore shocks and after shocks not included) with magnitude greater than 5.8 in the period from January of 1990 to May of 2001, we found that 8 earthquakes occurred within 5 months after the CRD with a duration of more than 20 days and a tilt velocity of more than 4.5ms/d without false prediction, but with one failure in earthquake prediction. For the strain CRD, 5 earthquakes occurred after the CRD; there was no false prediction, but 4 earthquakes unpredicted. We have tried to increase the thresholds, but found either the failure ratio or the rate of false prediction increased, while the success rate not obvious increased.