期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于网格运动统计算法和最佳缝合线的密集重复结构图像快速拼接方法 被引量:13
1
作者 牟琦 唐洋 +1 位作者 李占利 李洪安 《计算机应用》 CSCD 北大核心 2020年第1期239-244,共6页
针对常用的图像拼接算法对具有密集重复结构的图像会产生大量误匹配点从而出现明显鬼影且耗时较长的问题,将网格运动统计(GMS)算法与最佳缝合线算法相结合,提出了一种密集重复结构的图像快速拼接方法。首先,在图像的重叠区域提取大量粗... 针对常用的图像拼接算法对具有密集重复结构的图像会产生大量误匹配点从而出现明显鬼影且耗时较长的问题,将网格运动统计(GMS)算法与最佳缝合线算法相结合,提出了一种密集重复结构的图像快速拼接方法。首先,在图像的重叠区域提取大量粗匹配点;接着,采用GMS算法进行精匹配,然后在此基础上估计变换模型;最后,采用基于动态规划思想的最佳缝合线算法完成图像拼接。实验结果表明,将所提算法应用于两组具有密集重复结构的图像上,不仅可以有效消除鬼影,得到理想的拼接效果,而且显著减少了拼接时间;平均拼接速度分别是传统尺度不变特征变换(SIFT)和加速稳健特征(SURF)算法的7.4倍和3.2倍,分别是结合区域分块的SIFT算法和SURF算法的4.1倍和1.4倍。所提算法能够有效地消除密集重复结构拼接时的鬼影,同时缩短了拼接时间。 展开更多
关键词 图像拼接 网格加速统计算法(gms) 特征精匹配 最佳缝合线 图像融合
在线阅读 下载PDF
基于深度学习的图像特征匹配方法 被引量:6
2
作者 徐梦莹 刘文波 +1 位作者 郑祥爱 蔡超 《传感器与微系统》 CSCD 北大核心 2022年第7期61-64,共4页
针对同一场景或同一物体的两组或多组图像的匹配问题,提出了一种基于深度学习的图像特征匹配方法。首先用SuperPoint网络框架提取图像特征点,在最近邻次近邻比值法的基础上通过网络运动统计(GMS)算法区分正确匹配点和错误匹配点,最后采... 针对同一场景或同一物体的两组或多组图像的匹配问题,提出了一种基于深度学习的图像特征匹配方法。首先用SuperPoint网络框架提取图像特征点,在最近邻次近邻比值法的基础上通过网络运动统计(GMS)算法区分正确匹配点和错误匹配点,最后采用随机抽样一致性(RANSAC)算法进一步剔除误匹配点对。实验结果表明:所提算法在图像发生光照以及视角变化时平均匹配确正确率达到95%以上,具有较好的匹配识别率和鲁棒性。 展开更多
关键词 深度学习 SuperPoint 网格运动统计算法 随机抽样一致性算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部