期刊文献+
共找到82篇文章
< 1 2 5 >
每页显示 20 50 100
基于GWO-LMS-RSSD的旋转机械耦合故障分离及特征强化方法
1
作者 许文 施卫华 +3 位作者 李红钢 华如南 刘厚林 董亮 《机电工程》 北大核心 2025年第4期677-685,共9页
针对旋转机械耦合故障中较弱故障易被较强故障淹没及噪声干扰严重的问题,提出了基于灰狼优化算法(GWO)的自适应滤波最小均方(LMS)算法,结合共振稀疏分解(RSSD)的耦合故障特征分离及强化方法。首先,采用自适应滤波LMS算法对耦合故障信号... 针对旋转机械耦合故障中较弱故障易被较强故障淹没及噪声干扰严重的问题,提出了基于灰狼优化算法(GWO)的自适应滤波最小均方(LMS)算法,结合共振稀疏分解(RSSD)的耦合故障特征分离及强化方法。首先,采用自适应滤波LMS算法对耦合故障信号进行了滤波处理,使故障特征得到了初步强化;然后,根据耦合故障的不同共振属性,利用RSSD算法将故障耦合分解为高共振分量和低共振分量,完成了耦合故障分离;特别地,针对LMS算法中参数依赖人工经验、自适应差等问题,研究了基于灰狼优化算法(GWO)的参数自适应优化方法,设计了以信噪比和均方误差构成的优化目标;最后,对稀疏分解得到的信号进行了包络解调,完成了耦合故障分离及特征强化,同时,利用模拟信号和实验信号对该方法进行了验证分析。研究结果表明:GWO-LMS-RSSD算法能用于有效降低噪声干扰,分离旋转机械耦合故障及强化故障特征。该研究成果可为强噪声干扰下耦合故障的特征分离及强化提供一种新的思路。 展开更多
关键词 耦合故障诊断 旋转机械 共振稀疏分解 自适应滤波最小均方算法 灰狼优化算法 信噪比 均方误差
在线阅读 下载PDF
GWO优化CNN-BiLSTM-Attenion的轴承剩余寿命预测方法 被引量:5
2
作者 李敬一 苏翔 《振动与冲击》 北大核心 2025年第2期321-332,共12页
滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来... 滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来提高模型对重要特征的关注程度,对于长时间序列容易丢失重要信息。另外,神经网络中隐藏层神经元个数、学习率以及正则化参数等超参数还需要依靠人工经验设置。为了解决上述问题,提出基于灰狼优化(grey wolf optimizer, GWO)算法、优化集合CNN、双向长短期记忆(bidirectional long short term memory, BiLSTM)网络和注意力机制(Attention)轴承剩余使用寿命预测方法。首先,从原始振动信号中提取时域、频域以及时频域特征指标构建可选特征集;然后,通过构建考虑特征相关性、鲁棒性和单调性的综合评价指标筛选出高于设定阈值的轴承退化敏感特征集,作为预测模型的输入;最后,将预测值和真实值的均方误差作为GWO算法的适应度函数,优化预测模型获得最优隐藏层神经元个数、学习率和正则化参数,利用优化后模型进行剩余使用寿命预测,并在公开数据集上进行验证。结果表明,所提方法可在非经验指导下获得最优的超参数组合,优化后的预测模型与未进行优化模型相比,平均绝对误差与均方根误差分别降低了28.8%和24.3%。 展开更多
关键词 灰狼优化(gwo)算法 卷积神经网络(CNN) 双向长短期记忆(BiLSTM)网络 自注意力机制 剩余使用寿命预测
在线阅读 下载PDF
基于改进PSO-GWO算法的渠系优化配水模型研究 被引量:1
3
作者 姚成宝 岳春芳 +1 位作者 张胜江 郑秋丽 《人民黄河》 北大核心 2025年第1期128-133,共6页
为减少渠系输配水过程中的水量损失,针对闸门调控时间各异和频繁启闭的问题,以精河灌区茫乡团结支渠支斗两级渠系渗漏损失量最小为目标建立渠系配水模型,首次采用“组间轮灌,组内续灌”的配水方式,通过改进PSO-GWO算法求解,确定斗渠最... 为减少渠系输配水过程中的水量损失,针对闸门调控时间各异和频繁启闭的问题,以精河灌区茫乡团结支渠支斗两级渠系渗漏损失量最小为目标建立渠系配水模型,首次采用“组间轮灌,组内续灌”的配水方式,通过改进PSO-GWO算法求解,确定斗渠最优轮灌编组、配水流量和灌水时间等重要参数,得出渠系渗漏损失量和算法迭代次数,并与粒子群算法、灰狼算法的求解结果进行对比。改进模型使灌水时间缩短了0.62 d,支斗两级渠系水利用系数提高了0.168,改进PSO-GWO算法迭代次数为3次、渠系渗漏总量为16.69万m^(3),优于传统算法的配水结果。实例应用情况表明,改进算法具有更强的寻优能力和收敛性,并且模型在满足高效配水的同时,减少了闸门启闭次数,实现了集中调控,配水模式便捷,应用价值较高。 展开更多
关键词 渠系配水 渗漏损失 轮灌编组 改进PSO-gwo算法 粒子群算法 灰狼算法
在线阅读 下载PDF
基于GWO-BP模型与MOMPA算法的插秧机车架轻量化设计 被引量:1
4
作者 陈岁繁 侯万森 +3 位作者 张浩南 李其朋 夏琪玮 陈问池 《机电工程》 北大核心 2025年第5期933-944,共12页
为实现水稻插秧机车架的轻量化目标,提出了基于灰狼优化反向传播神经网络(GWO-BP)模型与多目标海洋捕食者算法(MOMPA)的联合优化方法。首先,对GWO-BP模型与MOMPA优化算法的构建进行了理论分析,建立了车架的三维模型和有限元模型,并对其... 为实现水稻插秧机车架的轻量化目标,提出了基于灰狼优化反向传播神经网络(GWO-BP)模型与多目标海洋捕食者算法(MOMPA)的联合优化方法。首先,对GWO-BP模型与MOMPA优化算法的构建进行了理论分析,建立了车架的三维模型和有限元模型,并对其性能进行了仿真;然后,采用灵敏度分析确定了可作为优化设计变量的8个主要结构参数,并利用实验设计的方法计算出设计变量与目标参数之间响应关系的数据,从而建立了GWO-BP近似模型,联合近似模型与MOMPA优化算法,以车架质量、最大变形最小为优化目标,求出了轻量化车架的最优结构参数组合;最后,对车架优化结果进行了验证,同时,分析了车架模态性能,并建立了车架样机,通过试验验证了车架轻量化结果。研究结果表明:车架质量、车架最大变形和最大等效应力的拟合精度分别为0.998 8、0.987 8、0.986 7,建立的近似模型具有较高精度;优化后车架质量比原车架降低了9.26%;优化结果与仿真结果误差在2%以内,且优化后车架固有频率可以有效避开外界激励,通过对比优化前后车架质量及性能,确定了优化结果的准确性与有效性;根据优化结果制造了轻量化车架的样机,其整体质量较原车架减轻了10.3%,达到了良好的轻量化效果,为农机车架轻量化研究提供了一定的借鉴。 展开更多
关键词 水稻插秧机 轻量化 灰狼优化反向传播神经网络 多目标海洋捕食者优化算法 车架模态分析
在线阅读 下载PDF
PCA+GWO集成特征选择和模型堆叠的客户流失预测
5
作者 刘梅 郑立君 +1 位作者 段永良 段红秀 《计算机工程与应用》 北大核心 2025年第15期329-342,共14页
客户的长期稳定对酒店营收和提高竞争力具有重要意义。在客户流失预测研究中,生产环境采集的数据存在数据量大、维度高、噪点多等问题,导致机器模型的准确率、稳定性和泛化能力下降。针对此类问题,设计了基于PCA+GWO的集成特征选择方法... 客户的长期稳定对酒店营收和提高竞争力具有重要意义。在客户流失预测研究中,生产环境采集的数据存在数据量大、维度高、噪点多等问题,导致机器模型的准确率、稳定性和泛化能力下降。针对此类问题,设计了基于PCA+GWO的集成特征选择方法,并用模型堆叠构建了客户流失预测模型。提出了利用Pearson系数和随机森林(RF)的特征重要性来确定需要降维特征组的方法。改进了灰狼优化算法(GWO)中的灰狼位置更新机制和收敛条件,并将其应用于选择最佳特征子集的过程中。选取了10种不同的机器学习模型进行训练,挑选出F1-score表现最优的模型作为基模型,进行元模型训练。实验结果表明,使用某酒店客户信息数据集时,改进后的GWO算法收敛速度显著提升,且预测模型的F1-score达到了97.9%,该模型具有较强的泛化能力。 展开更多
关键词 特征选择 随机森林(RF) 主成分分析(PCA) 灰狼优化(gwo)算法 模型堆叠
在线阅读 下载PDF
基于GWO-BP的震后过渡安置阶段应急物资需求预测 被引量:3
6
作者 詹伟 程春鑫 《中国安全科学学报》 CAS CSCD 北大核心 2024年第10期17-23,共7页
为精准预测地震灾区过渡性安置阶段的物资需求量,提高应急物资筹措的效率和准确性,收集我国历史地震数据信息,确定对转移安置人口数目影响较大的因素,建立基于灰狼优化算法(GWO)和反向传播(BP)神经网络的安置人口预测模型,结合人口与应... 为精准预测地震灾区过渡性安置阶段的物资需求量,提高应急物资筹措的效率和准确性,收集我国历史地震数据信息,确定对转移安置人口数目影响较大的因素,建立基于灰狼优化算法(GWO)和反向传播(BP)神经网络的安置人口预测模型,结合人口与应急物资间的数量关系,对震后过渡性安置阶段的物资需求量进行预测。结果表明:GWO-BP神经网络模型在预测转移安置人口方面,表现出较高的准确率和稳定性,能有效预测灾区安置人口数量,进而推算出相应的物资需求量。GWO-BP神经网络模型在震后过渡安置阶段的物资需求预测方面具有一定的有效性,能为震后应急物资的筹措决策提供参考。 展开更多
关键词 灰狼优化算法(gwo) 反向传播(BP)神经网络 地震 过渡安置阶段 应急物资 需求预测
在线阅读 下载PDF
基于GWO-ELM的高速铣削力预测模型研究
7
作者 仵景岳 尹凝霞 +1 位作者 吕亮亮 麦青群 《宇航材料工艺》 CAS CSCD 北大核心 2024年第5期24-30,共7页
针对TC4钛合金、7574铝合金、AISI304不锈钢及45^(#)钢等宇航材料在高速铣削过程中的高速铣削力预测问题,引入基于灰狼算法(GWO)改进的极限学习机(ELM)模型构建高速铣削力预测模型,利用二阶多元回归模型分析确定隐含层节点数,预测结果... 针对TC4钛合金、7574铝合金、AISI304不锈钢及45^(#)钢等宇航材料在高速铣削过程中的高速铣削力预测问题,引入基于灰狼算法(GWO)改进的极限学习机(ELM)模型构建高速铣削力预测模型,利用二阶多元回归模型分析确定隐含层节点数,预测结果与BP、RBF、ELM等七种预测模型和实验结果进行比较。研究结果表明:基于GWO-ELM的高速铣削力预测模型隐含层节点数可以利用二阶多元回归模型分析确定,预测模型的准确率为98.8%、决定系数达到0.98871优于其他预测模型,故基于GWO-ELM的高速铣削力预测模型具有可行性和准确性,该研究结果可为GWO-ELM模型隐含层节点数的确定及高速铣削力预测模型的选择提供参考与借鉴。 展开更多
关键词 宇航材料 高速铣削力 灰狼算法(gwo) 极限学习机(ELM)
在线阅读 下载PDF
灰狼优化算法研究综述 被引量:1
8
作者 蒋正锋 李春青 +4 位作者 杨秀增 李熙春 柳雪飞 莫洁安 韩凌波 《计算机工程与应用》 北大核心 2025年第16期76-105,共30页
灰狼优化算法凭借快速的收敛速度、简洁的参数设置以及易于实现的特性,在众多优化问题中得到了广泛关注和应用。为了跟踪最新研究成果,促进灰狼优化算法的研究,介绍了灰狼优化算法的基本原理与数学模型,简述了算法的实现步骤,并分析了... 灰狼优化算法凭借快速的收敛速度、简洁的参数设置以及易于实现的特性,在众多优化问题中得到了广泛关注和应用。为了跟踪最新研究成果,促进灰狼优化算法的研究,介绍了灰狼优化算法的基本原理与数学模型,简述了算法的实现步骤,并分析了算法的时间复杂度;针对算法收敛速度慢、收敛精度低等缺点,分类阐述了算法的各种改进策略,同时归纳总结了灰狼优化算法在特征选择、调度问题、参数优化、图像分割、路径规划和参数辨识等领域的应用;对灰狼优化算法未来的研究发展方向进行了展望。 展开更多
关键词 元启发式算法 群体智能优化 灰狼优化算法(gwo) 改进策略
在线阅读 下载PDF
基于GWO算法光伏阵列多峰值的MPPT 被引量:19
9
作者 张巧杰 王凯丽 房雪晴 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2018年第6期1526-1532,共7页
针对因遮挡处于部分阴影条件下的光伏阵列,其功率特性曲线由单峰曲线变为叠峰曲线,使最大功率点跟踪(MPPT)算法失效,而其他智能算法(如粒子群优化(PSO)算法)存在参数较多、收敛速度慢、振荡幅度大等问题,将收敛速度快、求解精度高的灰... 针对因遮挡处于部分阴影条件下的光伏阵列,其功率特性曲线由单峰曲线变为叠峰曲线,使最大功率点跟踪(MPPT)算法失效,而其他智能算法(如粒子群优化(PSO)算法)存在参数较多、收敛速度慢、振荡幅度大等问题,将收敛速度快、求解精度高的灰狼优化(GWO)算法应用于光伏阵列多峰值MPPT算法中.先建立处于局部遮挡情形下光伏阵列的数学模型,再解析基于GWO算法的MPPT算法原理.仿真实验结果表明:GWO算法可快速跟踪到最大功率点;GWO算法比PSO算法的跟踪速度提高1倍,跟踪效率提高0.1%. 展开更多
关键词 灰狼优化算法 最大功率点跟踪 部分阴影 光伏阵列
在线阅读 下载PDF
改进GWO优化SVM的服务器性能预测 被引量:8
10
作者 李建民 陈慧 +1 位作者 杨冬芹 林振荣 《计算机工程与设计》 北大核心 2019年第11期3099-3105,3163,共8页
为更加精确地对服务器性能进行评估与预测,提出一种基于差分进化(DE)与灰狼寻优(GWO)相结合的SVM模型(DE-GWO-SVM)。利用灰狼寻优算法(GWO)寻求SVM的最优参数组合惩罚因子C和核函数参数γ,提升SVM算法的预测性能,将DE算法用于生成灰狼... 为更加精确地对服务器性能进行评估与预测,提出一种基于差分进化(DE)与灰狼寻优(GWO)相结合的SVM模型(DE-GWO-SVM)。利用灰狼寻优算法(GWO)寻求SVM的最优参数组合惩罚因子C和核函数参数γ,提升SVM算法的预测性能,将DE算法用于生成灰狼寻优算法初始种群的最优值,克服GWO的初始种群随机生成的局限性,使GWO具有更加良好的寻优能力,获取SVM算法的参数组合C和γ的最优解。实验结果表明,相比于传统的SVM、ABCSVM、GWOSVM模型,DEGWOSVM预测模型具有较高的预测精度、良好的稳定性和泛化能力。 展开更多
关键词 支持向量机 灰狼寻优算法 差分进化算法 服务器性能 预测模型
在线阅读 下载PDF
基于CEEMD和GWO-SVR的铣削振动信号前瞻预测 被引量:6
11
作者 吴石 张轩瑞 刘献礼 《振动与冲击》 EI CSCD 北大核心 2022年第11期199-209,234,共12页
汽车覆盖件模具多采用镶块式模件拼接后整体加工,拼接区加工时易引发载荷突变产生冲击振动,影响拼接区的整体加工质量,为了提高拼接区的加工精度,对铣削过程的时域振动信号进行前瞻预测。首先基于互补式集合经验模态分解方法将铣削振动... 汽车覆盖件模具多采用镶块式模件拼接后整体加工,拼接区加工时易引发载荷突变产生冲击振动,影响拼接区的整体加工质量,为了提高拼接区的加工精度,对铣削过程的时域振动信号进行前瞻预测。首先基于互补式集合经验模态分解方法将铣削振动信号进行6层模态分解,得到各层本征模态函数及趋势序列;然后分别构建不同工况下的支持向量回归预测模型,采用灰狼优化算法对支持向量回归中的参数进行寻优分析;最后对时域振动信号进行重构和前瞻预测。试验结果表明,在淬硬钢拼接区铣削过程中,结合CEEMD和GWO-SVR的铣削振动信号前瞻预测方法相较于其它传统方法具有更良好的预测效果,在预测时间为0.12 s时总体预测准确率达94%以上。 展开更多
关键词 铣削振动 前瞻预测 互补式集成经验模态 支持向量回归 灰狼优化算法
在线阅读 下载PDF
基于RS-GWO-GRNN的充填管道失效风险研究 被引量:9
12
作者 骆正山 王文辉 张新生 《有色金属工程》 CAS 北大核心 2019年第6期76-83,共8页
为克服充填管道失效风险评判指标间的复杂性,传统方法预测精度低及适用性差等缺陷,提出基于粗糙集(RS)和灰狼优化(GWO)算法融合广义回归神经网络(GRNN)的充填管道失效风险评价模型。选取10项风险评价指标,通过属性约简提取影响充填管道... 为克服充填管道失效风险评判指标间的复杂性,传统方法预测精度低及适用性差等缺陷,提出基于粗糙集(RS)和灰狼优化(GWO)算法融合广义回归神经网络(GRNN)的充填管道失效风险评价模型。选取10项风险评价指标,通过属性约简提取影响充填管道失效的主要风险因素,运用GWO优化GRNN的参数,构建预测模型,以国内某具体矿山充填系统为例进行实证研究,结果表明:与其它预测模型相比,RS-GWO-GRNN模型的预测精度更高,泛化能力更强,为充填管道失效风险研究提供了新思路,具有较好的借鉴意义。 展开更多
关键词 粗糙集(RS)理论 灰狼优化(gwo)算法 广义回归神经网络(GRNN) 充填管道 失效风险
在线阅读 下载PDF
基于CGWO算法的边坡最小安全系数全局寻优方法 被引量:4
13
作者 王述红 魏崴 +1 位作者 韩文帅 陈浩 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第7期1033-1042,共10页
针对基本灰狼算法存在初始种群不均匀、早熟收敛等问题,基于混沌理论从三个方面对灰狼优化(grey wolf optimization,GWO)算法进行改进,提出了混沌灰狼优化(chaotic grey wolf optimization,CGWO)算法用于确定边坡的最小安全系数.首先,... 针对基本灰狼算法存在初始种群不均匀、早熟收敛等问题,基于混沌理论从三个方面对灰狼优化(grey wolf optimization,GWO)算法进行改进,提出了混沌灰狼优化(chaotic grey wolf optimization,CGWO)算法用于确定边坡的最小安全系数.首先,采用改进Tent混沌映射提高初始种群多样性;其次,通过混沌扰动策略避免算法陷入局部最优;最后,引入参数混沌非线性调节机制均衡算法的全局开发和局部勘探算力.13个基准测试函数的仿真结果表明,改进后的算法与基本GWO,WOA,PSO以及SCA相比具有更强的综合寻优性能.选取ACADS边坡考核题进行计算分析,CGWO算法表现出较高的计算精度和收敛速度,能够有效地搜索到复杂分层边坡的最小安全系数.对比有限元强度折减法,该方法具有操作简易、搜索区域易于设置等优点. 展开更多
关键词 灰狼优化算法 混沌映射 边坡稳定性分析 最危险滑动面 最小安全系数
在线阅读 下载PDF
基于CP结合DE-GWO-SVR的海上风电基础结构损伤识别 被引量:5
14
作者 杜尊峰 邵玄玄 王晓梅 《振动与冲击》 EI CSCD 北大核心 2020年第22期110-118,共9页
结构仅输出的振动信号往往是各种源信号通过复杂规律形成的混合信号,对结构损伤特征提取与数据挖掘造成了很大困难。对此,提出了一种基于盲源分离(BSS)理论的复杂度追踪(CP)算法结合差分进化(DE)改进灰狼(GWO)算法优化的支持向量机(SVR... 结构仅输出的振动信号往往是各种源信号通过复杂规律形成的混合信号,对结构损伤特征提取与数据挖掘造成了很大困难。对此,提出了一种基于盲源分离(BSS)理论的复杂度追踪(CP)算法结合差分进化(DE)改进灰狼(GWO)算法优化的支持向量机(SVR)用于解决复杂结构的模态与损伤识别;CP算法基于信号预测性函数通过使分离信号的时间预测性度量最大化找到其线性混合矩阵,使分离分量具有最小复杂度并据此估计源信号。利用CP算法对结构响应信号进性分离得到信号分布向量(SDV)与分离源信号,通过定义差值曲率分布向量可以对结构损伤位置进行准确定位;对于损伤程度的识别,提出了一种DE改进的GWO对SVR进行优化的算法,即在GWO算法迭代过程中利用差分进化思想引入动态缩放因子以及交叉概率因子提高搜索和收敛速度,扩大种群所搜范围;利用不同工况下CP算法提取的差值曲率分布向量对结构损伤程度进行识别。通过对海上风电基础结构数值模型的分析,结果表明:CP算法对于高阶模态参数识别较fastICA表现出较强的适应性与优越性;同时,DE-GWO能够提高收敛速度,通过SVR算法对损伤的识别结果相比于BP神经网络更加准确。 展开更多
关键词 盲源分离(BSS) 复杂度追踪(CP)算法 差分进化(DE) 灰狼优化(gwo)算法 海上风电基础结构 损伤识别 支持向量机(SVR)
在线阅读 下载PDF
基于结构冗余传感器配置与灰狼优化算法的无人机可诊断性优化设计 被引量:1
15
作者 谷旭平 史贤俊 《系统工程与电子技术》 北大核心 2025年第7期2283-2303,共21页
为提高无人机的可诊断性,提出基于结构冗余传感器配置与灰狼优化算法的可诊断性优化设计策略。首先,为弥补结构分析在衡量故障诊断难易程度的缺陷,提出基于Wasserstein距离的可诊断性评价方法。其次,设计结构冗余传感器配置算法,以最低... 为提高无人机的可诊断性,提出基于结构冗余传感器配置与灰狼优化算法的可诊断性优化设计策略。首先,为弥补结构分析在衡量故障诊断难易程度的缺陷,提出基于Wasserstein距离的可诊断性评价方法。其次,设计结构冗余传感器配置算法,以最低的传感器配置代价实现系统可诊断性最大化。最后,提出基于灰狼优化算法的可诊断性优化设计策略,在满足系统可诊断性定性和定量需求的前提下,最小化诊断系统设计代价。并基于固定翼无人机结构模型,利用所提算法,以最小的传感器优化配置代价,使得系统可检测率和可隔离率达到100%。此外,基于定性评价的优化策略,使得诊断代价缩减83%,较其他算法节省2%~15%;并基于定量评价的优化策略,使得诊断代价缩减90%,较其他算法节省0%~25%。 展开更多
关键词 结构分析 可诊断性 传感器配置 灰狼优化算法
在线阅读 下载PDF
灰狼粒子群混合算法在群控电梯中的应用 被引量:1
16
作者 马涛 佘世刚 《计算机工程》 北大核心 2025年第9期373-378,共6页
针对电梯群控系统(EGCS)中用户乘梯体验与系统能耗不理想的问题,提出一种基于改进粒子群的电梯群控多目标优化调度算法。首先,针对系统控制目标的复杂性,建立以乘客候梯时间、乘梯时间、长时候梯和系统能耗为指标的多目标优化模型,通过... 针对电梯群控系统(EGCS)中用户乘梯体验与系统能耗不理想的问题,提出一种基于改进粒子群的电梯群控多目标优化调度算法。首先,针对系统控制目标的复杂性,建立以乘客候梯时间、乘梯时间、长时候梯和系统能耗为指标的多目标优化模型,通过线性加权求和的方法设计系统综合评价函数,改变权重值以适应不同的交通模式。其次,引入灰狼优化(GWO)算法以解决粒子群优化(PSO)算法易陷入局部最优解的问题,将灰狼-粒子群混合优化算法应用到多目标调度系统中。仿真结果表明,该混合算法能够有效地减少用户的平均乘、候梯时长和电梯启停次数,提升了电梯群控系统的综合性能。 展开更多
关键词 群控电梯 多目标优化 软件仿真 灰狼优化算法 粒子群优化算法
在线阅读 下载PDF
融合多尺度注意力神经网络的港口起重装备故障时序数据预测方法 被引量:2
17
作者 雷鹏 谢敬玲 +4 位作者 许洪祖 焦锋 魏立明 张忠岩 吕成兴 《机电工程》 北大核心 2025年第2期277-286,共10页
近年来,深度神经网络在轴承时序预测领域得到了广泛应用。为了进一步提升港口起重装备滚动轴承时序模型预测的准确度,以青岛港门机为例对港口起重装备关键部位的滚动轴承时序预测进行了建模,提出了一种融合改进变分模态分解的多尺度注... 近年来,深度神经网络在轴承时序预测领域得到了广泛应用。为了进一步提升港口起重装备滚动轴承时序模型预测的准确度,以青岛港门机为例对港口起重装备关键部位的滚动轴承时序预测进行了建模,提出了一种融合改进变分模态分解的多尺度注意力机制港口装备故障时序数据预测方法。首先,采用了融合非线性策略与混沌映射的改进灰狼优化算法(IGWO),自适应地确定了变分模态分解(VMD)的模态数与惩罚因子;然后,将变分模态分解得到的本征模态函数进一步作为融合多尺度注意力神经网络(FMANN)模型的时序输入,进行了多尺度通道特征融合;最后,对各个本征模态函数的预测结果进行了融合,得到了最终预测结果。研究结果表明:FMANN模型在回转机构数据集上的均方根误差(RMSE)为0.001 12,平均绝对百分比误差(MAPE)为6.396 3%,决定系数为0.999 8;相比于其他预测模型,FMANN预测效果更加拟合实际数据。FMANN模型能够准确地预测设备轴承的时序振动,有望为未来实际工业生产提供一条新思路。 展开更多
关键词 滚动轴承 故障诊断 变分模态分解 注意力机制 灰狼优化算法 融合多尺度注意力神经网络 深度可分离卷积
在线阅读 下载PDF
基于灰狼-粒子群算法的有源配电网故障定位
18
作者 熊芮 赵林军 张宇航 《电力系统及其自动化学报》 北大核心 2025年第5期141-148,158,共9页
针对在有源配电网故障定位求解中所用的粒子群优化算法易陷入局部最优与收敛速度慢的问题,提出基于灰狼算法的多等级种群制度研究灰狼-粒子群有源配电网故障定位算法。该算法利用灰狼算法等级制度取代粒子群优化算法的最优个体,多等级... 针对在有源配电网故障定位求解中所用的粒子群优化算法易陷入局部最优与收敛速度慢的问题,提出基于灰狼算法的多等级种群制度研究灰狼-粒子群有源配电网故障定位算法。该算法利用灰狼算法等级制度取代粒子群优化算法的最优个体,多等级种群引导使得改进后的粒子群优化算法不易陷入局部最优;同时,结合灰狼群算法的等级收敛因子,调整粒子群优化算法不同迭代期全局寻优与局部精确寻优的分配,提升算法收敛速度。参照IEEE 33节点配电网模型,给出灰狼-粒子群有源配电网故障定位算法的数值分析,结果表明,灰狼-粒子群算法在收敛速度与定位准确性等方面具有优势。 展开更多
关键词 有源配电网 故障定位 粒子群优化算法 灰狼优化算法 等级制度
在线阅读 下载PDF
基于强化学习与变权组合模型的EV充电需求功率预测方法
19
作者 宋宗仁 葛泉波 李春喜 《数据采集与处理》 北大核心 2025年第2期530-544,共15页
当电动汽车(Electric vehicle,EV)与充电桩连接时,精确预测电动汽车动力电池组的充电需求功率,对于防止电池组过充电至关重要。由于电池组物理模型的复杂性使基于其充电需求功率预测方法通常难以构建,且实时性不高。此外,单一预测模型... 当电动汽车(Electric vehicle,EV)与充电桩连接时,精确预测电动汽车动力电池组的充电需求功率,对于防止电池组过充电至关重要。由于电池组物理模型的复杂性使基于其充电需求功率预测方法通常难以构建,且实时性不高。此外,单一预测模型的预测精度偏低。针对上述问题,结合充电数据与机器学习,提出一种基于强化学习与变权组合模型的EV充电需求功率预测方法。在传统灰狼优化算法的基础上,将混沌映射、精英反向学习策略相结合以提高初始种群的质量,利用强化学习的动态权重策略更新灰狼个体位置来优化最小二乘支持向量机(Least square support vector machine,LSSVM)算法中的参数;通过基于时变权重分配的变权组合方法合理分配极限学习机预测模型与改进LSSVM预测模型的权重,解决单一预测模型方法的不足;采用电动汽车的实际充电数据对所提预测算法进行验证,新方法相较于其他3种传统方法在预测精度上分别提高了4.75%、3.84%和0.38%。 展开更多
关键词 充电需求功率 变权组合 强化学习 灰狼优化算法 最小二乘支持向量机
在线阅读 下载PDF
Designing of optimized microstrip fractal antenna using hybrid metaheuristic framework for IoT applications
20
作者 S KARUNAKAR Reddy ANITHA Guttavelli 《Journal of Systems Engineering and Electronics》 2025年第3期659-670,共12页
Nowadays,wireless communication devices turn out to be transportable owing to the execution of the current technologies.The antenna is the most important component deployed for communication purposes.The antenna plays... Nowadays,wireless communication devices turn out to be transportable owing to the execution of the current technologies.The antenna is the most important component deployed for communication purposes.The antenna plays an imperative role in receiving and transmitting the signals for any sensor network.Among varied antennas,micro strip fractal antenna(MFA)significantly contributes to increasing antenna gain.This study employs a hybrid optimization method known as the elephant clan updated grey wolf algorithm to introduce an optimized MFA design.This method optimizes antenna characteristics,including directivity and gain.Here,the factors,including length,width,ground plane length,height,and feed offset-X and feed offset-Y,are taken into account to achieve the best performance of gain and directivity.Ultimately,the superiority of the suggested technique over state-of-the-art strategies is calculated for various metrics such as cost and gain.The adopted model converges to a minimal value of 0.2872.Further,the spider monkey optimization(SMO)model accomplishes the worst performance over all other existing models like elephant herding optimization(EHO),grey wolf optimization(GWO),lion algorithm(LA),support vector regressor(SVR),bacterial foraging-particle swarm optimization(BF-PSO)and shark smell optimization(SSO).Effective MFA design is obtained using the suggested strategy regarding various parameters. 展开更多
关键词 micro strip fractal antenna(MFA)model gain DIRECTIVITY support vector regressor(SVR)approach elephant clan updated grey wolf algorithm(ECU-GWA)
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部