This study proposes an alternative calculation mode for stresses on the slip surface(SS).The calculation of the normal stress(NS)on the SS involves examining its composition and expanding its unknown using the Taylor ...This study proposes an alternative calculation mode for stresses on the slip surface(SS).The calculation of the normal stress(NS)on the SS involves examining its composition and expanding its unknown using the Taylor series.This expansion enables the reasonable construction of a function describing the NS on the SS.Additionally,by directly incorporating the nonlinear Generalized Hoke-Brown(GHB)strength criterion and utilizing the slope factor of safety(FOS)definition,a function of the shear stress on the SS is derived.This function considers the mutual feedback mechanism between the NS and strength parameters of the SS.The stress constraints conditions are then introduced at both ends of the SS based on the spatial stress relation of one point.Determining the slope FOS and stress solution for the SS involves considering the mechanical equilibrium conditions and the stress constraint conditions satisfied by the sliding body.The proposed approach successfully simulates the tension-shear stress zone near the slope top and provides an intuitive description of the concentration effect of compression-shear stress of the SS near the slope toe.Furthermore,compared to other methods,the present method demonstrates superior processing capabilities for the embedded nonlinear GHB strength criterion.展开更多
In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with ...In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.展开更多
Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis r...Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis remain significant challenges.This research aims to develop an effective computational method for analyzing the free vibration of functionally graded(FG)microplates under high temperatures while resting on a Pasternak foundation(PF).This formulation leverages a new thirdorder shear deformation theory(new TSDT)for improved accuracy without requiring shear correction factors.Additionally,the modified couple stress theory(MCST)is incorporated to account for sizedependent effects in microplates.The PF is characterized by two parameters including spring stiffness(k_(w))and shear layer stiffness(k_(s)).To validate the proposed method,the results obtained are compared with those of the existing literature.Furthermore,numerical examples explore the influence of various factors on the high-temperature free vibration of FG microplates.These factors include the length scale parameter(l),geometric dimensions,material properties,and the presence of the elastic foundation.The findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the results of this research will have great potential in military and defense applications such as components of submarines,fighter aircraft,and missiles.展开更多
基金Project(52278380)supported by the National Natural Science Foundation of ChinaProject(2023JJ30670)supported by the National Science Foundation of and Technology Major Project of Hunan Province,China。
文摘This study proposes an alternative calculation mode for stresses on the slip surface(SS).The calculation of the normal stress(NS)on the SS involves examining its composition and expanding its unknown using the Taylor series.This expansion enables the reasonable construction of a function describing the NS on the SS.Additionally,by directly incorporating the nonlinear Generalized Hoke-Brown(GHB)strength criterion and utilizing the slope factor of safety(FOS)definition,a function of the shear stress on the SS is derived.This function considers the mutual feedback mechanism between the NS and strength parameters of the SS.The stress constraints conditions are then introduced at both ends of the SS based on the spatial stress relation of one point.Determining the slope FOS and stress solution for the SS involves considering the mechanical equilibrium conditions and the stress constraint conditions satisfied by the sliding body.The proposed approach successfully simulates the tension-shear stress zone near the slope top and provides an intuitive description of the concentration effect of compression-shear stress of the SS near the slope toe.Furthermore,compared to other methods,the present method demonstrates superior processing capabilities for the embedded nonlinear GHB strength criterion.
基金Supported by the National Natural Science Foundation of China(11671403,11671236,12101192)Henan Provincial General Natural Science Foundation Project(232300420113)。
文摘In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.
文摘Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis remain significant challenges.This research aims to develop an effective computational method for analyzing the free vibration of functionally graded(FG)microplates under high temperatures while resting on a Pasternak foundation(PF).This formulation leverages a new thirdorder shear deformation theory(new TSDT)for improved accuracy without requiring shear correction factors.Additionally,the modified couple stress theory(MCST)is incorporated to account for sizedependent effects in microplates.The PF is characterized by two parameters including spring stiffness(k_(w))and shear layer stiffness(k_(s)).To validate the proposed method,the results obtained are compared with those of the existing literature.Furthermore,numerical examples explore the influence of various factors on the high-temperature free vibration of FG microplates.These factors include the length scale parameter(l),geometric dimensions,material properties,and the presence of the elastic foundation.The findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the results of this research will have great potential in military and defense applications such as components of submarines,fighter aircraft,and missiles.