期刊文献+
共找到198篇文章
< 1 2 10 >
每页显示 20 50 100
A multi-objective gravitational search algorithm based approach of power system stability enhancement with UPFC 被引量:6
1
作者 Ajami Ali Armaghan Mehdi 《Journal of Central South University》 SCIE EI CAS 2013年第6期1536-1544,共9页
On the basis of the theoretical analysis of a single-machine infinite-bus (SMIB), using the modified linearized Phil- lips-Heffron model installed with unified power flow controller (UPFC), the potential of the UP... On the basis of the theoretical analysis of a single-machine infinite-bus (SMIB), using the modified linearized Phil- lips-Heffron model installed with unified power flow controller (UPFC), the potential of the UPFC supplementary controller to enhance the dynamic stability of a power system is evaluated by measuring the electromechanical controllability through singular value decomposition (SVD) analysis. This controller is tuned to simultaneously shift the undamped electromeehanical modes to a prescribed zone in the s-plane. The problem of robust UPFC based damping controller is formulated as an optimization problem according to the eigenvalue-based multi-objective function comprising the damping factor, and the damping ratio of the undamped electromechanical modes to be solved using gravitational search algorithm (GSA) that has a strong ability to find the most optimistic results. The different loading conditions are simulated on a SMIB system and the rotor speed deviation, internal voltage deviation, DC voltage deviation and electrical power deviation responses are studied with the effect of this flexible AC transmission systems (FACTS) controller. The results reveal that the tuned GSA based UPFC controller using the proposed multi-objective function has an excellent capability in damping power system with low frequency oscillations and greatly enhances the dynamic stability of the power systems. 展开更多
关键词 unified power flow controller gravitational search algorithm power system stability
在线阅读 下载PDF
Improved gravitational search algorithm based on free search differential evolution 被引量:1
2
作者 Yong Liu Liang Ma 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第4期690-698,共9页
This paper presents an improved gravitational search algorithm (IGSA) as a hybridization of a relatively recent evolutionary algorithm called gravitational search algorithm (GSA), with the free search differential... This paper presents an improved gravitational search algorithm (IGSA) as a hybridization of a relatively recent evolutionary algorithm called gravitational search algorithm (GSA), with the free search differential evolution (FSDE). This combination incorporates FSDE into the optimization process of GSA with an attempt to avoid the premature convergence in GSA. This strategy makes full use of the exploration ability of GSA and the exploitation ability of FSDE. IGSA is tested on a suite of benchmark functions. The experimental results demonstrate the good performance of IGSA. 展开更多
关键词 gravitational search algorithm (gsa free search differential evolution (FSDE) global optimization.
在线阅读 下载PDF
Gravitational search algorithm for coordinated design of PSS and TCSC as damping controller 被引量:2
3
作者 M.Eslami H.Shareef +1 位作者 A.Mohamed M.Khajehzadeh 《Journal of Central South University》 SCIE EI CAS 2012年第4期923-932,共10页
A newly developed heuristic global optimization algorithm, called gravitational search algorithm (GSA), was introduced and applied for simultaneously coordinated designing of power system stabilizer (PSS) and thyr... A newly developed heuristic global optimization algorithm, called gravitational search algorithm (GSA), was introduced and applied for simultaneously coordinated designing of power system stabilizer (PSS) and thyristor controlled series capacitor (TCSC) as a damping controller in the multi-machine power system. The coordinated design problem of PSS and TCSC controllers over a wide range of loading conditions is formulated as a multi-objective optimization problem which is the aggregation of two objectives related to damping ratio and damping factor. By minimizing the objective function with oscillation, the characteristics between areas are contained and hence the interactions among the PSS and TCSC controller under transient conditions are modified. For evaluation of effectiveness and robustness of proposed controllers, the performance was tested on a weakly connected power system subjected to different disturbances, loading conditions and system parameter variations. The cigenvalues analysis and nonlinear simulation results demonstrate the high performance of proposed controllers which is able to provide efficient damping of low frequency oscillations. 展开更多
关键词 gravitational search algorithm power system stabilizer thyristor controlled series capacitor tuning
在线阅读 下载PDF
Reliability improvement in distribution systems employing an integrated voltage sag mitigation method using binary gravitational search algorithm
4
作者 Salman Nesrullah Mohamed Azah Shareef Hussain 《Journal of Central South University》 SCIE EI CAS 2013年第11期3002-3014,共13页
A method for improving the level of reliability of distribution systems is presented by employing an integrated voltage sag mitigation method that comprises a two-staged strategy,namely,distribution network reconfigur... A method for improving the level of reliability of distribution systems is presented by employing an integrated voltage sag mitigation method that comprises a two-staged strategy,namely,distribution network reconfiguration(DNR)followed by DSTATCOM placement.Initially,an optimal DNR is applied to reduce the propagated voltage sags during the test period.The second stage involves optimal placement of the DSTATCOM to assist the already reconfigured network.The gravitational search algorithm is used in the process of optimal DNR and in placing DSTATCOM.Reliability assessment is performed using the well-known indices.The simulation results show that the proposed method is efficient and feasible for improving the level of system reliability. 展开更多
关键词 voltage sag RELIABILITY network reconfiguration DSTATCOM gravitational search algorithm
在线阅读 下载PDF
PSO-CGSA算法在移动机器人路径规划中的应用研究
5
作者 马凯凯 王文博 李国玄 《农业装备与车辆工程》 2025年第4期119-122,共4页
针对传统路径规划存在的局部最优解和计算复杂度的问题,采用一种基于粒子群(PSO)和混沌引力搜索(CGSA)的混合优化算法对移动机器人进行路径规划。该方法结合了粒子群优化的全局搜索能力,利用混沌系统的随机性、遍历性和规律性对引力搜... 针对传统路径规划存在的局部最优解和计算复杂度的问题,采用一种基于粒子群(PSO)和混沌引力搜索(CGSA)的混合优化算法对移动机器人进行路径规划。该方法结合了粒子群优化的全局搜索能力,利用混沌系统的随机性、遍历性和规律性对引力搜索算法进行改进,PSO算法利用群体协作的方式,能够迅速搜索到较优解,而CGSA则通过复合搜索策略避免陷入局部最优。仿真实验表明,所提混合算法具有较好的全局寻优性能和较快的收敛性,避障效果良好并具有较强的鲁棒性,适用于复杂场景下的路径规划任务。 展开更多
关键词 路径规划 引力搜索算法 粒子群算法
在线阅读 下载PDF
基于CEEMDAN-GSA-LSTM和SVR的光伏功率短期区间预测 被引量:6
6
作者 李芬 孙凌 +3 位作者 王亚维 屈爱芳 梅念 赵晋斌 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第6期806-818,共13页
针对光伏输出功率存在间歇性和波动性的问题,提出一种光伏功率短期区间预测模型.首先,该模型采用自适应噪声完备集合经验模态分解将历史光伏出力数据分解为不同的分量并按照其与赤纬角、时角等时序特征量的相关性定义为时序分量和随机分... 针对光伏输出功率存在间歇性和波动性的问题,提出一种光伏功率短期区间预测模型.首先,该模型采用自适应噪声完备集合经验模态分解将历史光伏出力数据分解为不同的分量并按照其与赤纬角、时角等时序特征量的相关性定义为时序分量和随机分量.其次,分别使用经过引力搜索算法优化的长短期记忆神经网络和支持向量回归模型对时序分量和随机分量进行预测.再次,叠加时序分量和随机分量的预测结果得到点预测结果.然后,对误差进行Johnson变换及正态分布建模后得到光伏功率区间预测结果.最后,利用算例验证该模型的有效性.结果表明:在不同天气情况下,上述模型比现有预测模型精度更高,具有较好的鲁棒性,能够基于预测值提供较为精准的置信区间. 展开更多
关键词 光伏功率预测 区间预测 自适应噪声完备集合经验模态分解 引力搜索算法 长短期记忆 支持向量回归 Johnson变换
在线阅读 下载PDF
基于PSO-GSA优化的井下加权质心人员定位算法 被引量:8
7
作者 谢国民 刘叶 +1 位作者 付华 刘明 《计算机应用研究》 CSCD 北大核心 2017年第3期710-713,共4页
针对煤矿复杂环境中,接收信号强度指示的人员定位精度较低,难以动态跟踪参数变化的问题,提出一种利用改进的引力搜索算法应用于加权质心定位中进行井下人员定位的方法。先采用对数距离路径损耗模型得到信标节点到未知节点的距离,然后通... 针对煤矿复杂环境中,接收信号强度指示的人员定位精度较低,难以动态跟踪参数变化的问题,提出一种利用改进的引力搜索算法应用于加权质心定位中进行井下人员定位的方法。先采用对数距离路径损耗模型得到信标节点到未知节点的距离,然后通过加权质心定位算法对未知节点进行定位,最后利用粒子群万有引力混合算法对相关参数和估计的位置信息进行优化。实验结果表明,该方法能够增强对环境变化的自适应能力,更有效地提高了定位精度。 展开更多
关键词 引力搜索算法 接收信号强度 加权质心定位 粒子群优化算法
在线阅读 下载PDF
基于Grid-GSA算法的植保无人机路径规划方法 被引量:31
8
作者 王宇 陈海涛 +1 位作者 李煜 李海川 《农业机械学报》 EI CAS CSCD 北大核心 2017年第7期29-37,共9页
为了提高植保无人机的作业效率,研究了一种路径规划方法。运用栅格法构建环境模型,根据实际的作业区域规模、形状等环境信息和无人机航向,为相应栅格赋予概率,无人机优先选择概率高的栅格行进。基于上述机制实现了在形状不规则的作业区... 为了提高植保无人机的作业效率,研究了一种路径规划方法。运用栅格法构建环境模型,根据实际的作业区域规模、形状等环境信息和无人机航向,为相应栅格赋予概率,无人机优先选择概率高的栅格行进。基于上述机制实现了在形状不规则的作业区域内进行往复回转式全覆盖路径规划;以每次植保作业距离为变量,根据仿真算法得出返航点数量与位置来确定寻优模型中的变量维数范围,以往返飞行、电池更换与药剂装填等非植保作业耗费时间最短为目标函数,通过采用引力搜索算法,实现对返航点数量与位置的寻优;为无人机设置必要的路径纠偏与光顺机制,使无人机能够按既定路线与速度飞行。对提出的路径规划方法进行了实例检验,结果显示,相比于简单规划与未规划的情况,运用Grid-GSA规划方法得出的结果中往返飞行距离总和分别减少了14%与68%,非植保作业时间分别减少了21%与36%,其它各项指标也均有不同程度的提高。在验证测试试验中,实际的往返距离总和减少了322 m,实际路径与规划路径存在较小偏差。验证了路径规划方法具有合理性、可行性以及一定的实用性。 展开更多
关键词 植保无人机 路径规划 栅格法 返航点 引力搜索算法
在线阅读 下载PDF
基于双层聚类与GSA-LSSVM的汽轮机热耗率多模型预测 被引量:13
9
作者 牛培峰 刘超 +2 位作者 李国强 张维平 陈科 《电机与控制学报》 EI CSCD 北大核心 2016年第3期90-95,共6页
针对单模型难以精确描述具有复杂非线性特性的汽轮机热耗率的问题,提出一种新的热耗率多模型建模方法。首先应用GK算法分析出最优聚类个数以及初始聚类中心,避免了聚类数确定的盲目性;然后利用核模糊C均值算法对热耗率样本集做出聚类划... 针对单模型难以精确描述具有复杂非线性特性的汽轮机热耗率的问题,提出一种新的热耗率多模型建模方法。首先应用GK算法分析出最优聚类个数以及初始聚类中心,避免了聚类数确定的盲目性;然后利用核模糊C均值算法对热耗率样本集做出聚类划分,在每个子空间中利用最小二乘支持向量机(LSSVM)辨识出相应子模型,同时,为了保证子模型精确度,采用引力搜索算法来解决LSSVM参数优化问题;最后,将子模型通过隶属度值加权融合得到精确的热耗率预测模型。以某600MW超临界汽轮机组为研究对象,基于现场数据建立汽轮机热耗率预报模型,仿真结果验证了提出的多模型建模方法具有较高的预报精确度和泛化能力。 展开更多
关键词 多模型 热耗率 引力搜索算法 最小二乘支持向量机 聚类
在线阅读 下载PDF
FCM融合改进的GSA算法在医学图像分割中的研究 被引量:8
10
作者 冯飞 刘培学 +1 位作者 李丽 陈玉杰 《计算机科学》 CSCD 北大核心 2018年第B06期252-254,共3页
医学图像由于具有复杂性,在对其进行图像分割时存在很大的不确定性,为了提高模糊c均值聚类算法(FCM)在处理医学图像分割时的性能,提出一种新的混合方法进行图像分割。利用FCM算法将图像像素分成均匀的区域,融合引力搜索算法,将改进的引... 医学图像由于具有复杂性,在对其进行图像分割时存在很大的不确定性,为了提高模糊c均值聚类算法(FCM)在处理医学图像分割时的性能,提出一种新的混合方法进行图像分割。利用FCM算法将图像像素分成均匀的区域,融合引力搜索算法,将改进的引力搜索算法纳入模糊c均值聚类算法中,以找到最优聚类中心,使模糊c均值聚类的适应度函数值最小,从而提高分割效果。实验结果表明,相对于传统的聚类算法,所提算法在分割复杂的医学图像方面更具有效性。 展开更多
关键词 FCM 引力搜索算法 分割 聚类中心
在线阅读 下载PDF
易跳出局部最优的改进引力搜索算法及应用
11
作者 赵彤彤 王海红 +1 位作者 王秀英 杜军威 《控制工程》 北大核心 2025年第5期921-927,共7页
针对引力搜索算法易早熟、收敛速度过快、难以平衡在进化过程中的全局和局部搜索能力、寻优精度不高等缺点,提出一种带有随机更新速度、易跳出局部最优的引力搜索算法(jump-gravitational search algorithm, JGSA)。首先,利用反向种群... 针对引力搜索算法易早熟、收敛速度过快、难以平衡在进化过程中的全局和局部搜索能力、寻优精度不高等缺点,提出一种带有随机更新速度、易跳出局部最优的引力搜索算法(jump-gravitational search algorithm, JGSA)。首先,利用反向种群提高算法初始种群的质量;然后,引入粒子群优化(particle swarm optimization, PSO)算法的学习策略更新算法的速度,实现全局与局部搜索能力的平衡;最后,当算法陷入局部最优时,设计了随机更新速度,使之跳出局部最优。利用6个基准测试函数进行仿真实验,并将JGSA应用到炼钢-连铸生产调度中,与其他算法进行比较的结果表明,JGSA在寻求最优调度计划方面有更好的优化性能。 展开更多
关键词 引力搜索算法 炼钢-连铸 生产调度 Jgsa
在线阅读 下载PDF
基于PSOGSA前向神经网络的石化控制系统入侵检测 被引量:4
12
作者 徐文星 王万红 +3 位作者 王芳 刘才 景邵星 赵国新 《化工学报》 EI CAS CSCD 北大核心 2018年第A02期350-357,共8页
针对日趋严峻的石化行业工业控制系统(ICS)安全形势,提出一种基于粒子群优化(PSO)和万有引力搜索算法(GSA)的前向神经网络(FNNPSOGSA),用于解决其中的入侵检测问题。分别利用GSA的全局寻优能力和PSO快速局部收敛优势,提出了一种基于PSO... 针对日趋严峻的石化行业工业控制系统(ICS)安全形势,提出一种基于粒子群优化(PSO)和万有引力搜索算法(GSA)的前向神经网络(FNNPSOGSA),用于解决其中的入侵检测问题。分别利用GSA的全局寻优能力和PSO快速局部收敛优势,提出了一种基于PSO和GSA的混合算法PSOGSA,并将其用于前向神经网络(FNNs)的训练。通过多组基准测试数据集,将FNNPSOGSA预测结果同FNNPSO、FNNGSA和参考文献中改进的FRGNN(K-NN)和FRGNN(Naive Bayes)预测结果相比较,验证了PSOGSA在训练FNNs中是可行的,并且FNNPSOGSA具有更高的预测准确率和更强的泛化能力。更进一步,对工控入侵检测标准数据集的仿真结果表明其在工控系统入侵检测中的可行性和有效性。 展开更多
关键词 神经网络 优化 算法 粒子群优化 引力搜索算法 工业控制系统
在线阅读 下载PDF
车辆磁流变半主动悬架GSA-LQG控制研究 被引量:9
13
作者 李刚 谢淼锦 +2 位作者 胡国良 杨程 阮志勇 《现代制造工程》 CSCD 北大核心 2022年第11期48-54,共7页
针对传统的线性二次型高斯(Linear Quadratic Gaussian,LQG)控制器存在各加权矩阵系数不易确定等问题,对于车辆磁流变半主动悬架设计了基于引力搜索算法(Gravity Search Algorithm,GSA)的线性二次型高斯(GSA-LQG)控制。以悬架各性能指... 针对传统的线性二次型高斯(Linear Quadratic Gaussian,LQG)控制器存在各加权矩阵系数不易确定等问题,对于车辆磁流变半主动悬架设计了基于引力搜索算法(Gravity Search Algorithm,GSA)的线性二次型高斯(GSA-LQG)控制。以悬架各性能指标为目标函数,采用引力搜索算法对加权矩阵系数进行寻优。选用磁流变阻尼器(Magnetorheological Damper,MRD)作为悬架的半主动部件,同时建立二自由度的1/4车辆磁流变半主动悬架系统模型。以随机路面激励作为输入,在MATLAB/Simulink软件中分别对被动悬架控制、基于LQG控制的车辆磁流变半主动悬架和基于GSA-LQG控制的车辆磁流变半主动悬架进行仿真分析,结果表明,基于GSA-LQG控制的车辆磁流变半主动悬架具有更好的舒适性能和安全性能。 展开更多
关键词 半主动悬架 磁流变阻尼器 引力搜索算法 gsa-LQG控制
在线阅读 下载PDF
融合FAST特征选择与ABQGSA-SVM的网络入侵检测 被引量:12
14
作者 李丛 闫仁武 +1 位作者 朱长水 高广银 《计算机应用研究》 CSCD 北大核心 2017年第7期2172-2179,共8页
为进一步提升网络入侵检测效果,提出一种融合FAST特征选择与自适应二进制量子引力搜索支持向量机的(FAST-ABQGSA-SVM)网络入侵检测算法。利用FAST算法过滤掉原始特征集中冗余无关的特征形成候选特征子集,基于组合优化策略采用自适应二... 为进一步提升网络入侵检测效果,提出一种融合FAST特征选择与自适应二进制量子引力搜索支持向量机的(FAST-ABQGSA-SVM)网络入侵检测算法。利用FAST算法过滤掉原始特征集中冗余无关的特征形成候选特征子集,基于组合优化策略采用自适应二进制量子引力搜索算法对候选特征子集与SVM分类器参数进行组合优化。在ABQGSA反复学习寻优过程中,采取动态自适应波动式调整策略更新量子旋转角以平衡算法全局搜索能力和局部搜索能力;同时为提升算法的自适应变异能力,设计与进化程度及个体适应度值相关的自适应变异概率,当种群进化出现停滞时及时引入量子位离散交叉操作帮助种群摆脱局部极值。通过KDD CUP 99仿真实验表明,所提出的FAST-ABQGSA-SVM算法较其他同类型检测算法具有更好的鲁棒性、学习精度以及检测效果。 展开更多
关键词 FAST特征选择 自适应二进制量子引力搜索算法 支持向量机 组合优化 入侵检测
在线阅读 下载PDF
基于GSA-VMD和自适应CNN的滚动轴承故障诊断 被引量:9
15
作者 王亚辉 刘德平 王宇 《组合机床与自动化加工技术》 北大核心 2022年第7期85-89,共5页
针对轴承故障诊断中,变分模态分解(VMD)的参数选择与卷积神经网络架构难以确定的问题,研究一种GSA-VMD和自适应CNN的滚动轴承故障诊断方法。首先,采用引力搜索算法(GSA)优化VMD的参数,接着利用优化的VMD分解轴承的振动信号得到若干模态... 针对轴承故障诊断中,变分模态分解(VMD)的参数选择与卷积神经网络架构难以确定的问题,研究一种GSA-VMD和自适应CNN的滚动轴承故障诊断方法。首先,采用引力搜索算法(GSA)优化VMD的参数,接着利用优化的VMD分解轴承的振动信号得到若干模态分量;然后,将模态分量与振动信号结合构建特征矩阵,作为自适应CNN的输入;最后,自适应CNN采用粒子群算法(PSO)解决CNN架构难以确定的问题,适应性地构建CNN故障诊断模型,判断轴承的故障类型。实验结果表明:与ANN、CNN-SVM、WDCNN、GA-CNN诊断方法对比,所提方法 准确率更高、稳定性好、适应性强。 展开更多
关键词 故障诊断 引力搜索算法 变分模态分解 粒子群算法 自适应卷积神经网络
在线阅读 下载PDF
基于GSA—SVM的循环流化床锅炉NO_x排放特性模型 被引量:4
16
作者 牛培峰 麻红波 +3 位作者 李国强 马云飞 陈贵林 张先臣 《计量学报》 CSCD 北大核心 2013年第6期602-606,共5页
为了准确地预测循环流化床锅炉NO_x排放量,以某热电厂循环流化床锅炉燃烧数据为样本,提出了基于支持向量机(SVM)的循环流化床锅炉NO_x排放特性GSA—SVM模型。由于SVM精度及泛化能力依赖于参数选择,故将万有引力搜索算法(GSA)运... 为了准确地预测循环流化床锅炉NO_x排放量,以某热电厂循环流化床锅炉燃烧数据为样本,提出了基于支持向量机(SVM)的循环流化床锅炉NO_x排放特性GSA—SVM模型。由于SVM精度及泛化能力依赖于参数选择,故将万有引力搜索算法(GSA)运用到模型参数寻优过程中,利用不同工况下的样本数据检验了模型的预测性能,并将该模型分别与BP神经网络、粒子群(PSO)和遗传算法(GA)优化的SVM模型进行比较,仿真实验证明GSA—SVM模型具有很好的辨识能力及良好的泛化能力。 展开更多
关键词 计量学 氮氧化物排放特性 万有引力搜索算法 支持向量机 循环流化床锅炉
在线阅读 下载PDF
一种基于GSA-SVM网络安全态势预测模型 被引量:9
17
作者 陈玉鑫 殷肖川 谭韧 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2018年第5期78-83,共6页
针对支持向量机的参数选择问题,结合引力搜索算法(GSA)需要设置的参数少以及全局优化能力强的特点,提出了一种GSA优化SVM参数的网络安全态势预测模型(GSA-SVM)。首先把SVM的参数视作在空间中的物体,并将SVM在该参数下预测产生的预测值... 针对支持向量机的参数选择问题,结合引力搜索算法(GSA)需要设置的参数少以及全局优化能力强的特点,提出了一种GSA优化SVM参数的网络安全态势预测模型(GSA-SVM)。首先把SVM的参数视作在空间中的物体,并将SVM在该参数下预测产生的预测值和实际值之间的均方误差mse作为目标优化函数,然后GSA通过模拟万有引力规律影响下物体的运动规律不断变化参数,最终找到SVM最优参数。最后根据最优参数建立网络安全态势预测模型。在Matlab平台采用MIT Lincoln实验室提供的DARPA1999数据集进行仿真测试,仿真结果表明:相对于其它预测算法,GSA-SVM提高了网络安全态势预测的准确度,加快了网络安全态势预测的速度,为网络安全态势预测提供了一种新的解决途径。 展开更多
关键词 网络安全态势预测 支持向量机 引力搜索算法
在线阅读 下载PDF
基于EEMD-IGSA-LSSVM的超短期风电功率预测 被引量:15
18
作者 江岳春 杨旭琼 +2 位作者 贺飞 陈礼锋 何钟南 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第10期70-78,共9页
为了提高风电场输出功率的预测精度,在保证安全操作的前提下,建立了一种基于集合经验模态分解(EEMD)、改进引力搜索算法(IGSA)、最小二乘支持向量机(LSSVM)相结合的风电功率组合预测模型.首先运用EEMD算法将风电功率时间序列分解成一系... 为了提高风电场输出功率的预测精度,在保证安全操作的前提下,建立了一种基于集合经验模态分解(EEMD)、改进引力搜索算法(IGSA)、最小二乘支持向量机(LSSVM)相结合的风电功率组合预测模型.首先运用EEMD算法将风电功率时间序列分解成一系列复杂度差异明显的子序列;其次利用相空间重构(PSR)对已分解好的子序列进行重构,对重构后的每个子序列分别建立IGSA-LSSVM预测模型,为分析不同核函数构造LSSVM的差异性,建立了8种核函数LSSVM预测模型,利用IGSA算法求解其模型;最后以中国内蒙古地区的某一风电场为算例,仿真及验算结果表明,利用IGSA算法寻优得到的指数径向基核函数核参数和惩罚因子构建的LSSVM模型具有较高的预测准确性;与EEMDWNN,EEMD-PSO-LSSVM等5种常规组合模型相比,所提出的指数径向基核函数的EEMD-IGSA-LSSVM组合模型能有效、准确地进行风电功率预测. 展开更多
关键词 集合经验模态分解 风功率预测 最小二乘向量机 改进引力搜索算法 指数径向基核函数
在线阅读 下载PDF
采用动态多子群GSA-RBF神经网络的机车黏着优化控制 被引量:7
19
作者 李宁洲 冯晓云 卫晓娟 《铁道学报》 EI CAS CSCD 北大核心 2014年第12期27-34,共8页
为解决机车牵引过程中轮轨间最优黏着利用能否获得的问题,提出一种基于高斯RBF神经网络的机车黏着智能优化控制方法。针对黏着极限态优化控制效果的定量评估,定义了同时考虑轮轨间黏着力变化指标和牵引电机转矩波动指标的加权目标函数;... 为解决机车牵引过程中轮轨间最优黏着利用能否获得的问题,提出一种基于高斯RBF神经网络的机车黏着智能优化控制方法。针对黏着极限态优化控制效果的定量评估,定义了同时考虑轮轨间黏着力变化指标和牵引电机转矩波动指标的加权目标函数;提出动态多子群GSA算法以优化RBFNN参数,避免了参数选择的盲目性,提高了RBFNN的收敛速度和学习能力;此外,该方法不依赖被控对象的解析模型,仅基于系统输入、输出信息完成控制器设计,并通过对电机转矩的动态调整,实现轮轨间黏着的最优利用。仿真结果验证了该方法的正确性和有效性。 展开更多
关键词 机车黏着智能优化控制 加权目标函数 高斯RBF神经网络 动态多子群gsa算法
在线阅读 下载PDF
基于GSA与DE优化混合核ELM的网络异常检测模型 被引量:14
20
作者 生龙 袁丽娜 +1 位作者 武南南 姬少培 《计算机工程》 CAS CSCD 北大核心 2022年第6期146-153,共8页
为了增强网络入侵检测模型的准确率与泛化性,提出一种基于引力搜索算法(GSA)与差分进化(DE)算法优化混合核极限学习机(ELM)的网络入侵检测模型。该模型针对采用单个核函数的ELM模型存在的泛化能力弱、学习能力差的问题,结合多项式核函... 为了增强网络入侵检测模型的准确率与泛化性,提出一种基于引力搜索算法(GSA)与差分进化(DE)算法优化混合核极限学习机(ELM)的网络入侵检测模型。该模型针对采用单个核函数的ELM模型存在的泛化能力弱、学习能力差的问题,结合多项式核函数和径向基函数的优点,构建混合核ELM模型(HKELM),将GSA和DE相结合优化HKELM模型参数,从而提高其在异常检测过程中的全局和局部优化能力,在此基础上利用核主成分分析算法进行入侵检测数据的数据降维和特征抽取,构建网络入侵检测模型KPCA-GSADE-HKELM。在KDD99数据集上的实验结果表明,与KDDwinner、CSVAC、CPSO-SVM、Dendron等模型进行对比,KPCA-GSADE-HKELM模型具有更高的检测精度和更快的检测速度。 展开更多
关键词 网络入侵检测 异常检测 引力搜索算法 差分进化算法 混合核极限学习机 检测精度
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部