This article explores the drilling behavior of polymer nanocomposites reinforced by Graphene oxide/Carbon fiber using a hybrid method of Grey theory and Principal component analysis(GR-PCA).An online digital dynamomet...This article explores the drilling behavior of polymer nanocomposites reinforced by Graphene oxide/Carbon fiber using a hybrid method of Grey theory and Principal component analysis(GR-PCA).An online digital dynamometer was employed for the evaluation of Thrust Force and Torque.The image processing technique computes the delamination.Response surface methodology(RSM)considers the parameters,namely,drilling speed(S),feed rate(F),Graphene Oxide wt.%(G)in designing the experimentation array.Principal component analysis(PCA)was used to tackle the response priority weight during the combination of multiple functions.Analysis of variance(ANOVA)scrutinized the influence of parameters and intended the regression models to predict the response.GR-PCA evaluated the optimal parametric setting and remarked that feed rate acts as the most predominant factor.The higher feed rate and wt.%of G is responsible for surface damages like fiber pull-out,fiber fracture and cracks.A significant improvement in drilling responses has been obtained and also validates through confirmatory test and microstructure investigations.展开更多
In order to further improve the driving performance of ionic polymer metal composites(IPMCs),Nafion/graphene quantum dots(GQDs)hybrid membranes incorporating GQDs with various contents of 0,0.1 wt.%,0.5 wt.%,1.0 wt.%,...In order to further improve the driving performance of ionic polymer metal composites(IPMCs),Nafion/graphene quantum dots(GQDs)hybrid membranes incorporating GQDs with various contents of 0,0.1 wt.%,0.5 wt.%,1.0 wt.%,2.0 wt.%and 4.0 wt.%were fabricated by solution casting,and then IPMCs were manufactured by electroless plating.The water contents and elastic moduli of the hybrid membranes were tested.The morphology characteristics of the hybrid membranes and the IPMCs were observed,and the current,AC impedance,blocking force and displacement of the IPMCs were measured.The results show that the elastic modulus of the hybrid membranes decreases,the water content increases,and the actuation performance of the IPMCs improves significantly after the addition of GQDs.IPMC with 1.0 wt.%GQDs exhibits the best driving property.Compared with the IPMC without GQDs,the working current,ion conductivity,blocking force,and tip displacement increase by 94.67%,311.11%,53.66%,and 66.07%,respectively.These results lay a solid foundation for the preparation of IPMCs with high performance,and further broaden their applications in biomedical devices and bionic robots.展开更多
In pursuit of more efficient and stable electrochemical energy storage materials,composite materials consisting of metal oxides and graphene oxide have garnered significant attention due to their unique structures and...In pursuit of more efficient and stable electrochemical energy storage materials,composite materials consisting of metal oxides and graphene oxide have garnered significant attention due to their unique structures and exceptional properties.Graphene oxide(GO),a two-dimensional material with an extremely high specific surface area and excellent conductivity,offers new possibilities for enhancing the electrochemical performance of metal oxides.In this work,we synthesized met-al-organic framework(MOF)and GO composites by regulating the amount of GO,and successfully prepared composites of metal oxides supported by nitrogen-doped carbon frameworks and GO through a simple one-step calcination process.Based on the electrochemical tests,the optimal amount of GO was determined.This research will provide new insights into and directions for designing and synthesizing metal oxide and graphene oxide composite materials with an ideal electro-chemical performance.展开更多
文摘This article explores the drilling behavior of polymer nanocomposites reinforced by Graphene oxide/Carbon fiber using a hybrid method of Grey theory and Principal component analysis(GR-PCA).An online digital dynamometer was employed for the evaluation of Thrust Force and Torque.The image processing technique computes the delamination.Response surface methodology(RSM)considers the parameters,namely,drilling speed(S),feed rate(F),Graphene Oxide wt.%(G)in designing the experimentation array.Principal component analysis(PCA)was used to tackle the response priority weight during the combination of multiple functions.Analysis of variance(ANOVA)scrutinized the influence of parameters and intended the regression models to predict the response.GR-PCA evaluated the optimal parametric setting and remarked that feed rate acts as the most predominant factor.The higher feed rate and wt.%of G is responsible for surface damages like fiber pull-out,fiber fracture and cracks.A significant improvement in drilling responses has been obtained and also validates through confirmatory test and microstructure investigations.
基金Projects(51605220,U1637101)supported by the National Natural Science Foundation of ChinaProject(BK20160793)supported by the Jiangsu Provincial Natural Science Foundation,ChinaProject(NS2020029)supported by the Fundamental Research Funds for the Central Universities,China。
文摘In order to further improve the driving performance of ionic polymer metal composites(IPMCs),Nafion/graphene quantum dots(GQDs)hybrid membranes incorporating GQDs with various contents of 0,0.1 wt.%,0.5 wt.%,1.0 wt.%,2.0 wt.%and 4.0 wt.%were fabricated by solution casting,and then IPMCs were manufactured by electroless plating.The water contents and elastic moduli of the hybrid membranes were tested.The morphology characteristics of the hybrid membranes and the IPMCs were observed,and the current,AC impedance,blocking force and displacement of the IPMCs were measured.The results show that the elastic modulus of the hybrid membranes decreases,the water content increases,and the actuation performance of the IPMCs improves significantly after the addition of GQDs.IPMC with 1.0 wt.%GQDs exhibits the best driving property.Compared with the IPMC without GQDs,the working current,ion conductivity,blocking force,and tip displacement increase by 94.67%,311.11%,53.66%,and 66.07%,respectively.These results lay a solid foundation for the preparation of IPMCs with high performance,and further broaden their applications in biomedical devices and bionic robots.
基金supported by the National Natural Science Foundation of China(51971157)Shenzhen Science and Technology Program(JCYJ20210324115412035,JCYJ202103-24123202008,JCYJ20210324122803009 and ZDS-YS20210813095534001)Guangdong Foundation for Basic and Applied Basic Research Program(2021A1515110880).
文摘In pursuit of more efficient and stable electrochemical energy storage materials,composite materials consisting of metal oxides and graphene oxide have garnered significant attention due to their unique structures and exceptional properties.Graphene oxide(GO),a two-dimensional material with an extremely high specific surface area and excellent conductivity,offers new possibilities for enhancing the electrochemical performance of metal oxides.In this work,we synthesized met-al-organic framework(MOF)and GO composites by regulating the amount of GO,and successfully prepared composites of metal oxides supported by nitrogen-doped carbon frameworks and GO through a simple one-step calcination process.Based on the electrochemical tests,the optimal amount of GO was determined.This research will provide new insights into and directions for designing and synthesizing metal oxide and graphene oxide composite materials with an ideal electro-chemical performance.