期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Microwave-enabled rapid,continuous,and substrate-free synthesis of few-layer graphdiyne nanosheets for enhanced potassium metal battery performance 被引量:1
1
作者 KONG Ya ZHANG Shi-peng +6 位作者 YIN Yu-ling ZHANG Zi-xuan FENG Xue-ting DING Feng ZHANG Jin TONG Lian-ming GAO Xin 《新型炭材料(中英文)》 北大核心 2025年第3期642-650,共9页
Graphdiyne(GDY)is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention.However,its efficient and scalable synthesis remains a significant challenge.... Graphdiyne(GDY)is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention.However,its efficient and scalable synthesis remains a significant challenge.We present a microwave-assisted approach for its continuous,large-scale production which enables synthesis at a rate of 0.6 g/h,with a yield of up to 90%.The synthesized GDY nanosheets have an average diameter of 246 nm and a thickness of 4 nm.We used GDY as a stable coating for potassium(K)metal anodes(K@GDY),taking advantage of its unique molecular structure to provide favorable paths for K-ion transport.This modification significantly inhibited dendrite formation and improved the cycling stability of K metal batteries.Full-cells with perylene-3,4,9,10-tetracarboxylic dianhydride(PTCDA)cathodes showed the clear superiority of the K@GDY anodes over bare K anodes in terms of performance,stability,and cycle life.The K@GDY maintained a stable voltage plateau and gave an excellent capacity retention after 600 cycles with nearly 100%Coulombic efficiency.This work not only provides a scalable and efficient way for GDY synthesis but also opens new possibilities for its use in energy storage and other advanced technologies. 展开更多
关键词 graphdiyne Microwave-assisted synthesis Few-layer Potassium metal battery Dendrite-free
在线阅读 下载PDF
Ultrathin hydrogen-substituted graphdiyne nanosheets containing pdclusters used for the degradation of environmental pollutants
2
作者 SU Xin-yu QIU Sheng-en +3 位作者 YANG Hang YU Feng HAN Gao-rong CHEN Zong-ping 《新型炭材料(中英文)》 北大核心 2025年第3期666-677,共12页
Graphdiyne(GDY)and its derivatives have been considered ideal supporting materials for nanoscale active particles because of their unique atomic and electronic structure.An efficient bi-metal Cu-Pd catalyst was added ... Graphdiyne(GDY)and its derivatives have been considered ideal supporting materials for nanoscale active particles because of their unique atomic and electronic structure.An efficient bi-metal Cu-Pd catalyst was added to produce the uniform deposition of Pd nano-clusters with an average size of~0.95 nm on hydrogen-substituted GDY(HGDY)nanosheets.With the assistance of NaBH4,the resulting Pd/H-GDY was very effective in the degradation of 4-nitrophenol(4-NP),whose conversion was sharply increased to 97.21%in 100 s with a rate constant per unit mass(k`)of 8.97×10^(5)min−1 g^(−1).Additionally,dyes such as methyl orange(MO)and Congo red(CR)were completely degraded within 180 and 90 s,respectively.The Pd/H-GDY maintained this activity after 5 reduction cycles.These results highlight the promising performance of Pd/H-GDY in catalyzing the degradation of various pollutants,which is attributed to the combined effect of the largeπ-conjugated structure of the H-GDY nanosheets and the evenly distributed Pd nanoclusters. 展开更多
关键词 graphdiyne Pollutants degradation Catalyst IN-SITU efficient
在线阅读 下载PDF
Small⁃size Au nanoparticles anchored on pyrenyl⁃graphdiyne for N_(2)electroreduction
3
作者 LIU Chang ZHANG Chao LU Tongbu 《无机化学学报》 北大核心 2025年第1期174-182,共9页
A gold catalyst of Au/pyrenyl‑graphdiyne(Pyr‑GDY)was prepared by anchoring small size of gold nanoparticles(Au NPs)on the surface of Pyr‑GDY for electrocatalytic nitrogen reduction reaction(eNRR),in which Au NPs with ... A gold catalyst of Au/pyrenyl‑graphdiyne(Pyr‑GDY)was prepared by anchoring small size of gold nanoparticles(Au NPs)on the surface of Pyr‑GDY for electrocatalytic nitrogen reduction reaction(eNRR),in which Au NPs with a size of approximately 3.69 nm was evenly distributed on spongy‑like porous Pyr‑GDY.The catalyst exhibited a good electrocatalytic activity for N_(2)reduction in a nitrogen‑saturated electrolyte,with an ammonia yield of 32.1μg·h^(-1)·mg_(cat)^(-1)at-0.3 V(vs RHE),3.5 times higher than that of Au/C(Au NPs anchored on carbon black).In addition,Au/Pyr‑GDY showed a Faraday efficiency(FE)of 26.9%for eNRR,and a good catalysis durability for over 22 h. 展开更多
关键词 graphdiyne small‑size Au nanoparticle electrocatalytic nitrogen reduction
在线阅读 下载PDF
A Co_(3)O_(4)/graphdiyne heterointerface for efficient ammonia production from nitrates
4
作者 CHEN Zhao-yang ZHAO Shu-ya +3 位作者 LUAN Xiao-yu ZHENG Zhi-qiang YAN Jia-yu XUE Yu-rui 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第1期142-151,共10页
The nitrate reduction reaction(NtRR)has been demonstrated to be a promising way for obtaining ammonia(NH_(3))by converting NO3-to NH3.Here we report the controlled synthesis of cobalt tetroxide/graphdiyne heterostruct... The nitrate reduction reaction(NtRR)has been demonstrated to be a promising way for obtaining ammonia(NH_(3))by converting NO3-to NH3.Here we report the controlled synthesis of cobalt tetroxide/graphdiyne heterostructured nanowires(Co_(3)O_(4)/GDY NWs)by a simple two-step process including the synthesis of Co_(3)O_(4)NWs and the following growth of GDY using hex-aethynylbenzene as the precursor at 110°C for 10 h.Detailed scanning electron microscopy,high resolution transmission electron microscopy,X-ray photoelectron spectroscopy,and Raman characterization confirmed the synthesis of a Co_(3)O_(4)/GDY heterointerface with the formation of sp-C-Co bonds at the interface and incomplete charge transfer between GDY and Co,which provide a con-tinuous supply of electrons for the catalytic reaction and ensure a rapid NtRR.Because of these advantages,Co_(3)O_(4)/GDY NWs had an excellent NtRR performance with a high NH3 yield rate(YNH3)of 0.78 mmol h^(-1)cm^(-2)and a Faraday efficiency(FE)of 92.45%at-1.05 V(vs.RHE).This work provides a general approach for synthesizing heterostructures that can drive high-performance ammo-nia production from wastewater under ambient conditions. 展开更多
关键词 graphdiyne HETEROSTRUCTURES ELECTROCATALYSIS Nitrate reduction reaction Ammonia production
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部