Graphdiyne(GDY)is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention.However,its efficient and scalable synthesis remains a significant challenge....Graphdiyne(GDY)is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention.However,its efficient and scalable synthesis remains a significant challenge.We present a microwave-assisted approach for its continuous,large-scale production which enables synthesis at a rate of 0.6 g/h,with a yield of up to 90%.The synthesized GDY nanosheets have an average diameter of 246 nm and a thickness of 4 nm.We used GDY as a stable coating for potassium(K)metal anodes(K@GDY),taking advantage of its unique molecular structure to provide favorable paths for K-ion transport.This modification significantly inhibited dendrite formation and improved the cycling stability of K metal batteries.Full-cells with perylene-3,4,9,10-tetracarboxylic dianhydride(PTCDA)cathodes showed the clear superiority of the K@GDY anodes over bare K anodes in terms of performance,stability,and cycle life.The K@GDY maintained a stable voltage plateau and gave an excellent capacity retention after 600 cycles with nearly 100%Coulombic efficiency.This work not only provides a scalable and efficient way for GDY synthesis but also opens new possibilities for its use in energy storage and other advanced technologies.展开更多
Graphdiyne(GDY)and its derivatives have been considered ideal supporting materials for nanoscale active particles because of their unique atomic and electronic structure.An efficient bi-metal Cu-Pd catalyst was added ...Graphdiyne(GDY)and its derivatives have been considered ideal supporting materials for nanoscale active particles because of their unique atomic and electronic structure.An efficient bi-metal Cu-Pd catalyst was added to produce the uniform deposition of Pd nano-clusters with an average size of~0.95 nm on hydrogen-substituted GDY(HGDY)nanosheets.With the assistance of NaBH4,the resulting Pd/H-GDY was very effective in the degradation of 4-nitrophenol(4-NP),whose conversion was sharply increased to 97.21%in 100 s with a rate constant per unit mass(k`)of 8.97×10^(5)min−1 g^(−1).Additionally,dyes such as methyl orange(MO)and Congo red(CR)were completely degraded within 180 and 90 s,respectively.The Pd/H-GDY maintained this activity after 5 reduction cycles.These results highlight the promising performance of Pd/H-GDY in catalyzing the degradation of various pollutants,which is attributed to the combined effect of the largeπ-conjugated structure of the H-GDY nanosheets and the evenly distributed Pd nanoclusters.展开更多
A gold catalyst of Au/pyrenyl‑graphdiyne(Pyr‑GDY)was prepared by anchoring small size of gold nanoparticles(Au NPs)on the surface of Pyr‑GDY for electrocatalytic nitrogen reduction reaction(eNRR),in which Au NPs with ...A gold catalyst of Au/pyrenyl‑graphdiyne(Pyr‑GDY)was prepared by anchoring small size of gold nanoparticles(Au NPs)on the surface of Pyr‑GDY for electrocatalytic nitrogen reduction reaction(eNRR),in which Au NPs with a size of approximately 3.69 nm was evenly distributed on spongy‑like porous Pyr‑GDY.The catalyst exhibited a good electrocatalytic activity for N_(2)reduction in a nitrogen‑saturated electrolyte,with an ammonia yield of 32.1μg·h^(-1)·mg_(cat)^(-1)at-0.3 V(vs RHE),3.5 times higher than that of Au/C(Au NPs anchored on carbon black).In addition,Au/Pyr‑GDY showed a Faraday efficiency(FE)of 26.9%for eNRR,and a good catalysis durability for over 22 h.展开更多
The nitrate reduction reaction(NtRR)has been demonstrated to be a promising way for obtaining ammonia(NH_(3))by converting NO3-to NH3.Here we report the controlled synthesis of cobalt tetroxide/graphdiyne heterostruct...The nitrate reduction reaction(NtRR)has been demonstrated to be a promising way for obtaining ammonia(NH_(3))by converting NO3-to NH3.Here we report the controlled synthesis of cobalt tetroxide/graphdiyne heterostructured nanowires(Co_(3)O_(4)/GDY NWs)by a simple two-step process including the synthesis of Co_(3)O_(4)NWs and the following growth of GDY using hex-aethynylbenzene as the precursor at 110°C for 10 h.Detailed scanning electron microscopy,high resolution transmission electron microscopy,X-ray photoelectron spectroscopy,and Raman characterization confirmed the synthesis of a Co_(3)O_(4)/GDY heterointerface with the formation of sp-C-Co bonds at the interface and incomplete charge transfer between GDY and Co,which provide a con-tinuous supply of electrons for the catalytic reaction and ensure a rapid NtRR.Because of these advantages,Co_(3)O_(4)/GDY NWs had an excellent NtRR performance with a high NH3 yield rate(YNH3)of 0.78 mmol h^(-1)cm^(-2)and a Faraday efficiency(FE)of 92.45%at-1.05 V(vs.RHE).This work provides a general approach for synthesizing heterostructures that can drive high-performance ammo-nia production from wastewater under ambient conditions.展开更多
基金supported by National Natural Science Foundation of China(52302034,52402060,52202201,52021006)Beijing National Laboratory for Molecular Sciences(BNLMS-CXTD202001)+1 种基金Shenzhen Science and Technology Innovation Commission(KQTD20221101115627004)China Postdoctoral Science Foundation(2024T170972)。
文摘Graphdiyne(GDY)is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention.However,its efficient and scalable synthesis remains a significant challenge.We present a microwave-assisted approach for its continuous,large-scale production which enables synthesis at a rate of 0.6 g/h,with a yield of up to 90%.The synthesized GDY nanosheets have an average diameter of 246 nm and a thickness of 4 nm.We used GDY as a stable coating for potassium(K)metal anodes(K@GDY),taking advantage of its unique molecular structure to provide favorable paths for K-ion transport.This modification significantly inhibited dendrite formation and improved the cycling stability of K metal batteries.Full-cells with perylene-3,4,9,10-tetracarboxylic dianhydride(PTCDA)cathodes showed the clear superiority of the K@GDY anodes over bare K anodes in terms of performance,stability,and cycle life.The K@GDY maintained a stable voltage plateau and gave an excellent capacity retention after 600 cycles with nearly 100%Coulombic efficiency.This work not only provides a scalable and efficient way for GDY synthesis but also opens new possibilities for its use in energy storage and other advanced technologies.
基金National Natural Science Foundation of China(52072336,51902285)Zhejiang Provincial Natural Science Foundation(LR23E020002)+1 种基金Fundamental Research Funds for the Central Universities(226-2023-00064,226-2024-00146)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2022SZ-FR001)。
文摘Graphdiyne(GDY)and its derivatives have been considered ideal supporting materials for nanoscale active particles because of their unique atomic and electronic structure.An efficient bi-metal Cu-Pd catalyst was added to produce the uniform deposition of Pd nano-clusters with an average size of~0.95 nm on hydrogen-substituted GDY(HGDY)nanosheets.With the assistance of NaBH4,the resulting Pd/H-GDY was very effective in the degradation of 4-nitrophenol(4-NP),whose conversion was sharply increased to 97.21%in 100 s with a rate constant per unit mass(k`)of 8.97×10^(5)min−1 g^(−1).Additionally,dyes such as methyl orange(MO)and Congo red(CR)were completely degraded within 180 and 90 s,respectively.The Pd/H-GDY maintained this activity after 5 reduction cycles.These results highlight the promising performance of Pd/H-GDY in catalyzing the degradation of various pollutants,which is attributed to the combined effect of the largeπ-conjugated structure of the H-GDY nanosheets and the evenly distributed Pd nanoclusters.
文摘A gold catalyst of Au/pyrenyl‑graphdiyne(Pyr‑GDY)was prepared by anchoring small size of gold nanoparticles(Au NPs)on the surface of Pyr‑GDY for electrocatalytic nitrogen reduction reaction(eNRR),in which Au NPs with a size of approximately 3.69 nm was evenly distributed on spongy‑like porous Pyr‑GDY.The catalyst exhibited a good electrocatalytic activity for N_(2)reduction in a nitrogen‑saturated electrolyte,with an ammonia yield of 32.1μg·h^(-1)·mg_(cat)^(-1)at-0.3 V(vs RHE),3.5 times higher than that of Au/C(Au NPs anchored on carbon black).In addition,Au/Pyr‑GDY showed a Faraday efficiency(FE)of 26.9%for eNRR,and a good catalysis durability for over 22 h.
文摘The nitrate reduction reaction(NtRR)has been demonstrated to be a promising way for obtaining ammonia(NH_(3))by converting NO3-to NH3.Here we report the controlled synthesis of cobalt tetroxide/graphdiyne heterostructured nanowires(Co_(3)O_(4)/GDY NWs)by a simple two-step process including the synthesis of Co_(3)O_(4)NWs and the following growth of GDY using hex-aethynylbenzene as the precursor at 110°C for 10 h.Detailed scanning electron microscopy,high resolution transmission electron microscopy,X-ray photoelectron spectroscopy,and Raman characterization confirmed the synthesis of a Co_(3)O_(4)/GDY heterointerface with the formation of sp-C-Co bonds at the interface and incomplete charge transfer between GDY and Co,which provide a con-tinuous supply of electrons for the catalytic reaction and ensure a rapid NtRR.Because of these advantages,Co_(3)O_(4)/GDY NWs had an excellent NtRR performance with a high NH3 yield rate(YNH3)of 0.78 mmol h^(-1)cm^(-2)and a Faraday efficiency(FE)of 92.45%at-1.05 V(vs.RHE).This work provides a general approach for synthesizing heterostructures that can drive high-performance ammo-nia production from wastewater under ambient conditions.