期刊文献+
共找到523篇文章
< 1 2 27 >
每页显示 20 50 100
PromptVis:面向文本生成图片的提示词的交互式可视分析方法 被引量:2
1
作者 卢裕弘 封颖超杰 +4 位作者 朱琳 周海怡 朱航 喻晨昊 陈为 《计算机辅助设计与图形学学报》 北大核心 2025年第4期688-696,共9页
高效地使用提示词实现文本到图片的生成是当前大模型的一个研究热点.针对现有工作在提示词工程方面的不足,提出一种面向文本生成图片的提示词的交互式可视分析方法——PromptVis,帮助用户评估并迭代改进提示词,以提升图片质量.首先对用... 高效地使用提示词实现文本到图片的生成是当前大模型的一个研究热点.针对现有工作在提示词工程方面的不足,提出一种面向文本生成图片的提示词的交互式可视分析方法——PromptVis,帮助用户评估并迭代改进提示词,以提升图片质量.首先对用户输入的提示词语句进行成分解析,并提供改进提示词的建议,如推荐相关的提示词;然后将用户输入与系统推荐的提示词集合进行聚类呈现,并支持用户交互探索;第三,从多个维度自动评估文本提示词和生成的图片,为用户修改提示词提供参考;第四,根据推荐的提示词对现有图片进行局部调整,支持用户预览提示词的修改效果.通过用户对比实验,从提示词创作效率分析和实用性问卷评估2个角度,证明了所提方法在辅助用户进行提示词创作上的实用性与有效性. 展开更多
关键词 文本生成图片 提示词工程 提示词可视化
在线阅读 下载PDF
基于Prompt打分的实体链接方法
2
作者 郭俊辰 马御棠 +2 位作者 相艳 赵学东 郭军军 《计算机工程》 北大核心 2025年第3期334-341,共8页
实体链接旨在将自然语言文本中的提及链接到知识库中相应的目标实体,主要面临提及和候选实体的表征能力有限,导致候选实体精确排序困难的问题,而现有的知识库扩展和图嵌入等提高表征能力的方法依赖外部数据或知识,限制了其应用。提出一... 实体链接旨在将自然语言文本中的提及链接到知识库中相应的目标实体,主要面临提及和候选实体的表征能力有限,导致候选实体精确排序困难的问题,而现有的知识库扩展和图嵌入等提高表征能力的方法依赖外部数据或知识,限制了其应用。提出一种实体链接中提及和候选实体精确排序的方法,通过结合提及上下文构建prompt问句,将提及和候选实体相似度计算转化为基于prompt问句的打分模式。通过预训练模型微调打分器,得到提及和候选实体相似度的打分,并综合候选实体发现阶段的得分,以筛选出更准确的目标实体。这一过程无需额外的知识,能够融合上下文信息,从而更准确地衡量提及和实体之间的相似度。在两个公共数据集上将该模型与基线模型进行实验比较,结果表明,相比次优模型,该模型Acc@1值分别提升了0.88和0.41百分点。 展开更多
关键词 实体链接 prompt问句 预训练模型 实体消歧 精确排序
在线阅读 下载PDF
基于Prompt的两阶段澄清问题生成方法 被引量:5
3
作者 王培冰 张宁 张春 《计算机应用研究》 CSCD 北大核心 2024年第2期421-425,共5页
在自然语言相关系统中,当用户输入存在歧义时,生成澄清问题询问用户有助于系统理解用户需求;基于Prompt的方法可以更好地挖掘预训练语言模型的潜在知识,但往往需要手动设计模板,限制其生成澄清问题的多样性。为解决这一问题,提出了TSCQG... 在自然语言相关系统中,当用户输入存在歧义时,生成澄清问题询问用户有助于系统理解用户需求;基于Prompt的方法可以更好地挖掘预训练语言模型的潜在知识,但往往需要手动设计模板,限制其生成澄清问题的多样性。为解决这一问题,提出了TSCQG(two-stage clarification question generation)方法。首先,在动态Prompt模板生成阶段,利用歧义上下文和预训练语言模型生成动态的Prompt模板;然后在缺失信息生成阶段,将Prompt模板与外部知识相结合,充分利用预训练语言模型的生成能力生成相应的缺失信息。实验结果表明,在CLAQUA数据集的多轮对话情况中,BLEU值和ROUGE-L值分别达到了58.31和84.33,在ClariQ-FKw数据集上,BLEU值和ROUGE-L值分别达到了31.18和58.86。实验结果证明了TSCQG方法在澄清问题生成任务上的有效性。 展开更多
关键词 预训练语言模型 prompt 澄清问题生成 自然语言系统
在线阅读 下载PDF
基于prompt tuning的中文文本多领域情感分析研究 被引量:2
4
作者 赵文辉 吴晓鸰 +1 位作者 凌捷 HOON Heo 《计算机工程与科学》 CSCD 北大核心 2024年第1期179-190,共12页
不同领域的情感文本表达方式不一样,通常需要为各个领域训练相应的情感分析模型。针对无法用一个模型进行高效多领域情感分析的问题,提出了基于提示微调(prompt tuning)的多领域文本情感分析方法MSAPT。借助hard prompt,指示情感文本的... 不同领域的情感文本表达方式不一样,通常需要为各个领域训练相应的情感分析模型。针对无法用一个模型进行高效多领域情感分析的问题,提出了基于提示微调(prompt tuning)的多领域文本情感分析方法MSAPT。借助hard prompt,指示情感文本的所属领域和待选的情感标签,调动不同领域情感分析相关的知识,再为情感分析预训练一个统一的“通才模型”,在下游的各领域文本学习中,保持模型冻结,通过prompt tuning使模型学习到下游各领域情感文本的特征。MSAPT仅需保存一个模型和一些参数量远远小于模型的prompt,实现了多领域情感分析。在多个属于不同领域的情感文本数据集上进行实验,结果表明仅进行prompt tuning时,MSAPT效果优于模型微调(model tuning)的。最后,分别对适应特定领域的prompt tuning、hard prompt、soft prompt的长度和中间训练数据集的大小进行消融实验,从证明其对情感分析效果的影响。 展开更多
关键词 多领域情感分析 提示微调 预训练语言模型 T5
在线阅读 下载PDF
文本分类中Prompt Learning方法研究综述 被引量:4
5
作者 顾勋勋 刘建平 +1 位作者 邢嘉璐 任海玉 《计算机工程与应用》 CSCD 北大核心 2024年第11期50-61,共12页
文本分类是自然语言处理中的一项基础任务,在情感分析、新闻分类等领域具有重要应用。相较于传统的机器学习和深度学习模型,提示学习可以在数据不足的情况下通过构建提示来进行文本分类。近年来,GPT-3的出现推动了提示学习方法的发展,... 文本分类是自然语言处理中的一项基础任务,在情感分析、新闻分类等领域具有重要应用。相较于传统的机器学习和深度学习模型,提示学习可以在数据不足的情况下通过构建提示来进行文本分类。近年来,GPT-3的出现推动了提示学习方法的发展,并且在文本分类领域取得了显著的进展。对以往的文本分类方法进行简要梳理,分析其存在的问题与不足;阐述了提示学习的发展进程,以及构建提示模板的方法,并对用于文本分类的提示学习方法研究及成果进行了介绍和总结。最后,对提示学习在文本分类领域的发展趋势和有待进一步研究的难点进行了总结和展望。 展开更多
关键词 提示学习 文本分类 情绪分析 新闻分类
在线阅读 下载PDF
基于大型语言模型的AI招生咨询助理设计与实现 被引量:3
6
作者 阮昆 杨璟轩 +3 位作者 殷旭 储雯 罗婷婷 黄容 《实验室研究与探索》 北大核心 2025年第2期110-116,共7页
针对高考招生咨询业务繁忙,咨询覆盖范围有限、咨询效率不高等问题,基于检索增强生成、大型语言模型、提示词工程和检索增强生成转结构化查询语言等技术构建AI招生咨询助理,搜集学校招生信息网招生政策、常见问题、学院专业介绍等建立... 针对高考招生咨询业务繁忙,咨询覆盖范围有限、咨询效率不高等问题,基于检索增强生成、大型语言模型、提示词工程和检索增强生成转结构化查询语言等技术构建AI招生咨询助理,搜集学校招生信息网招生政策、常见问题、学院专业介绍等建立本地权威招生知识库,对政策咨询类问题直接在本地向量知识库检索,对数据查询类问题转化为SQL数据查询,将检索或查询结果送至大模型推理生成回复,提升提问方式的自由度以及问题回复的权威性和实时性,降低大模型幻觉,实现全天候为考生和家长提供精准化、智能化、个性化的咨询服务。在2024年高考招生咨询中,大幅度减轻学校招生咨询工作压力,有效提升招生咨询效率,促进公平获取招生信息。 展开更多
关键词 大型语言模型 检索增强生成技术 提示词工程 招生咨询
在线阅读 下载PDF
从“负能”到“赋能”:基于LLMs的思维链提示设计与教研AI智能体构建——以课堂教学智能分析为例 被引量:12
7
作者 王冬青 陈自力 +3 位作者 邵文豪 张粤芳 李赞坚 任光杰 《中国电化教育》 北大核心 2025年第3期111-117,125,共8页
课堂教学智能分析是人工智能技术赋能循证教研的新趋势,通常以报告的形式呈现给一线教师,但其往往包含巨大认知负荷且数据呈现复杂,使得一线教师难以把握问题关键点并用于教学改进,以数据“赋能”为出发点,却反而给教师带去了数据“负... 课堂教学智能分析是人工智能技术赋能循证教研的新趋势,通常以报告的形式呈现给一线教师,但其往往包含巨大认知负荷且数据呈现复杂,使得一线教师难以把握问题关键点并用于教学改进,以数据“赋能”为出发点,却反而给教师带去了数据“负能”。该文基于思维链提示逻辑,提出了教研AI智能体赋能课堂教学分析报告解读的构建框架,实现从数据解析到反馈生成的循环,并以此为导向模块化构建了基于开源大语言模型(LLMs)的智能体框架,个性化开发教研AI智能体。通过63份真实报告数据,验证了“基于思维链提示的回复”相较于“基于LLM的普通回复”的有效性,结果表明前者在多项评价维度上均表现出更高的评分,尤其是在准确性、逻辑性和专业性方面具有显著提升。该文通过聚焦智能体在教研中的垂直应用,探索从数据负能到赋能转变的新路径。 展开更多
关键词 大语言模型 智能体 思维链提示 课堂教学智能分析 循证教研
在线阅读 下载PDF
“寻路”新质教育:提示素养的理论框架、实践路径与未来图景 被引量:2
8
作者 崔宇红 曲文澜 +1 位作者 王飒 刘洋 《大学图书馆学报》 北大核心 2025年第2期39-49,共11页
生成式AI时代,提示素养已成为新质教育发展的核心能力,这对于培养适应人机协同和人机共生需求的新质人才具有重要意义。在理论层面,构建提示素养的“知识理解—应用分析—价值创造”三层级递进的概念框架,阐释其生成、演化与核心内涵。... 生成式AI时代,提示素养已成为新质教育发展的核心能力,这对于培养适应人机协同和人机共生需求的新质人才具有重要意义。在理论层面,构建提示素养的“知识理解—应用分析—价值创造”三层级递进的概念框架,阐释其生成、演化与核心内涵。面向提示素养应用实践,以“寻路”模型为指导,分析生成式AI学习环境下提示素养的形塑过程,以契合提示设计的动态适应性探索与批判性思维本质特征。“寻路”模型通过目标定位、路径决策、认知地图和反馈闭环四个关键步骤,探讨提示词设计策略,结合苏格拉底提问法及项目制学习等方法,探索提示素养培养的实现路径。展望未来,提示素养可能面临停滞、渐进、繁荣和挑战等多种情景,需协同技术进步、政策引导和社会环境,系统性推动提示素养的广泛应用与健康发展。 展开更多
关键词 新质教育 提示素养 “寻路”模型 生成式人工智能
在线阅读 下载PDF
重思“表达”概念的规范意义——兼论人工智能用户指令行为的法律性质 被引量:4
9
作者 李琛 《知识产权》 北大核心 2025年第5期3-20,共18页
作品即表达,表达的本质性构成是符号。不同的作品类型运用不同的符号媒介,即作品语言。表达能力即运用作品语言的能力,这种能力具有稀缺性,“著作权法只保护表达”因此获得了正当性。由于作品语言之间存在差异,在大多数情况下,不同作品... 作品即表达,表达的本质性构成是符号。不同的作品类型运用不同的符号媒介,即作品语言。表达能力即运用作品语言的能力,这种能力具有稀缺性,“著作权法只保护表达”因此获得了正当性。由于作品语言之间存在差异,在大多数情况下,不同作品类型之间不构成同一或转换关系。人工智能用户的单纯指令行为只是表示了对生成结果的需求,没有运用相应的作品语言,不属于表达行为。可以用文字“说画”的观点,违反了作品语言对作品类型制约的规律。生成式人工智能的便利性,构成该技术使用的自然动力,无须法律额外激励。无论基于概念分析还是政策分析,都不应把人工智能用户的单纯指令行为解释为创作。 展开更多
关键词 表达 思想 著作权 人工智能生成内容 用户指令
在线阅读 下载PDF
提示素养:数智时代高校图书馆信息素养教育的新拓展 被引量:1
10
作者 李书宁 萧雨佳 佟蕊 《图书馆论坛》 北大核心 2025年第9期52-60,共9页
伴随AIGC大语言模型发展,提示素养成为素养技能的重要内容。文章立足高校图书馆,讨论提示素养概念及其对信息素养能力的拓展,分析高校图书馆开展提示素养教育的意义,构建由提示语意识、提示语知识、提示语能力、提示语伦理组成的提示素... 伴随AIGC大语言模型发展,提示素养成为素养技能的重要内容。文章立足高校图书馆,讨论提示素养概念及其对信息素养能力的拓展,分析高校图书馆开展提示素养教育的意义,构建由提示语意识、提示语知识、提示语能力、提示语伦理组成的提示素养框架模型;从制定工作规划或细则、组建专业化的教育团队、开发特色教育资源、编写提示语撰写技能指南与提示语集、关注提示语伦理等方面提出对策。 展开更多
关键词 提示素养 信息素养 AI素养 内容框架
在线阅读 下载PDF
多任务联合学习下的复杂天气航拍图像目标检测算法 被引量:2
11
作者 王新蕾 王硕 +2 位作者 翟嘉政 肖瑞林 廖晨旭 《计算机工程与应用》 北大核心 2025年第2期97-111,共15页
针对雨雾等复杂天气下无人机图像质量下降导致目标检测效果不佳的问题,提出基于上下文引导和提示学习的目标检测算法CGP-YOLO(context-guided and prompt-based YOLOv8)。构建一个多任务联合学习的检测网络,通过双分支结构达到平衡图像... 针对雨雾等复杂天气下无人机图像质量下降导致目标检测效果不佳的问题,提出基于上下文引导和提示学习的目标检测算法CGP-YOLO(context-guided and prompt-based YOLOv8)。构建一个多任务联合学习的检测网络,通过双分支结构达到平衡图像检测和恢复的任务。提出基于提示学习的跨层注意力加权图像去噪分支,指导网络利用退化提示重构清晰的图像;模型主干设计基于上下文的残差采样模块,集成卷积注意力机制,综合目标的局部和全局信息;采用可分离大核多尺度特征提取模块,处理网络多尺度特征;引入小目标的专用检测头,增强小目标的检测精度。实验结果表明,在参数量仅为基线模型60%的情况下,该模型的检测精度提高了2.4个百分点,平均精度(mAP)提高了2.04个百分点,模型检测效果优于其他经典模型,具备卓越的性能。 展开更多
关键词 多任务学习 目标检测 无人机图像 复杂天气 提示学习 去噪模型
在线阅读 下载PDF
基于知识库问答的回答生成研究 被引量:1
12
作者 饶东宁 许正辉 梁瑞仕 《计算机工程》 北大核心 2025年第2期94-101,共8页
知识库问答旨在利用事先构建好的知识库来回答用户提出的问题。现有的知识库问答研究主要通过对候选实体和关系路径进行排序,最后将三元组的尾实体作为答案返回。用户给出的问题经过实体识别模型和实体消歧模型之后,可以链接到知识库中... 知识库问答旨在利用事先构建好的知识库来回答用户提出的问题。现有的知识库问答研究主要通过对候选实体和关系路径进行排序,最后将三元组的尾实体作为答案返回。用户给出的问题经过实体识别模型和实体消歧模型之后,可以链接到知识库中与答案相关的候选实体。利用语言模型的生成能力,可以将答案拓展为一句话并返回,这对用户而言是更加友好的。为了提高模型的泛化能力和弥补问题文本与结构化知识之间的差别,将候选实体及其一跳关系子图通过提示模板进行组织输入到生成模型中,并在回答模板的引导下生成通俗流畅的回答。在NLPCC 2016 CKBQA和KgCLUE两个中文数据集上的实验结果表明:该方法在BLEU、METEOR和ROUGE指标上分别平均比BART-large模型提高了2.8、2.3和1.5百分点;在Perplexity指标上,该方法与ChatGPT的回答表现相当。 展开更多
关键词 知识库问答 提示 实体链接 预训练模型 回答生成
在线阅读 下载PDF
提升零样本工业异常检测方法泛化性的属性无关提示学习分析 被引量:1
13
作者 刘桂雄 闫奕樸 +1 位作者 陈贵龙 邢星奥 《激光杂志》 北大核心 2025年第5期64-70,共7页
工业异常检测是制造过程质量控制核心环节,零样本工业异常检测属性无关提示学习是提升泛化性有效途径。本文面向工业生产应用,针对零样本工业异常检测属性无关提示学习,从可学习文本提示、物体解耦文本提示两个方面的基本原理、框架、... 工业异常检测是制造过程质量控制核心环节,零样本工业异常检测属性无关提示学习是提升泛化性有效途径。本文面向工业生产应用,针对零样本工业异常检测属性无关提示学习,从可学习文本提示、物体解耦文本提示两个方面的基本原理、框架、流程与应用性能等内容,系统分析比较各方法应用特点,指出图像与文本共同优化提示,以及细化异常特征描述是该领域值得关注方向,对工业异常检测技术研究人员具有指导参考价值。 展开更多
关键词 工业异常检测 属性无关提示学习 大模型 零样本
在线阅读 下载PDF
融合知识图谱与大语言模型的科技文献复杂知识对象抽取研究
14
作者 陈文杰 胡正银 +1 位作者 石栖 卢颖 《现代情报》 北大核心 2025年第7期14-25,63,共13页
[目的/意义]科技文献复杂知识对象对科技文献中的深度知识内容进行细粒度、全面的知识表示,可有效支撑数智驱动的科学发现与知识发现,是重要的科技创新要素。[方法/过程]首先,通过轻量级本体构建、BRAT知识标注和Neo4j知识存储等步骤实... [目的/意义]科技文献复杂知识对象对科技文献中的深度知识内容进行细粒度、全面的知识表示,可有效支撑数智驱动的科学发现与知识发现,是重要的科技创新要素。[方法/过程]首先,通过轻量级本体构建、BRAT知识标注和Neo4j知识存储等步骤实现领域知识图谱构建,其次,本地化部署大语言模型ChatGLM2-6B并通过低秩适应(Low-Rank Adaptation,LoRA)技术微调模型,最后基于思维记忆(Memory of Thoughts,MOT)机制将知识图谱中的复杂知识注入提示中,通过与大语言模型的多轮问答从科技文献中抽取出复杂知识对象。[结果/结论]以有机太阳能电池(Organic Solar Cells,OSC)为例验证方法的有效性,结果表明融合知识图谱与大语言模型的抽取方法优于大语言模型单独支撑的抽取方法,在准确率P、召回率R和F1值3个指标上分别提升14.1%、10.3%和12.3%。知识图谱能够增强大语言模型对科技文献的复杂知识对象抽取能力,提升OSC领域的科技文献挖掘效率与准确性。 展开更多
关键词 知识图谱 大语言模型 科技文献 太阳能电池 知识抽取 提示构建
在线阅读 下载PDF
基于ABSA与动态少样本提示的主观知识对话回复生成模型 被引量:1
15
作者 饶东宁 庄杰涛 《计算机应用研究》 北大核心 2025年第6期1706-1712,共7页
在最新的任务导向型对话系统挑战中,有效利用主观知识(如个人见解)对于满足用户的特定需求至关重要。然而,由于此类知识具有个体主观性的特征,如何有效地整合和利用这些信息成为了研究的关键焦点。提出一种名为DynSense的方法,旨在解决... 在最新的任务导向型对话系统挑战中,有效利用主观知识(如个人见解)对于满足用户的特定需求至关重要。然而,由于此类知识具有个体主观性的特征,如何有效地整合和利用这些信息成为了研究的关键焦点。提出一种名为DynSense的方法,旨在解决从多条相关用户主观意见中生成全面且概括性回复的挑战。DynSense首先运用基于方面的情感分析(ABSA)技术来解析主观知识片段中的方面及其情感极性,并实现用户询问与知识片段的对齐。接着,利用先进对话模型结合对话上下文及经ABSA增强的信息生成回应。特别设计的DynMatch算法通过动态选择与当前查询最相似的高质量知识片段作为少样本提示(few-shot prompts),以引导模型生成更贴切的回复。实验结果表明,DynSense展现出对潜在语义特征和情感倾向的卓越捕捉能力,实现了精准、全面且高度贴合过往用户评价的回复。与现有模型相比,DynSense在SKTOD基准上的各项评估指标均有显著提升。 展开更多
关键词 任务导向型对话系统 主观知识 基于方面项的情感分析 动态少样本提示
在线阅读 下载PDF
基于瞬发γ中子活化分析的氢化锆高温释氢检测技术研究
16
作者 王立鹏 苏春磊 +5 位作者 袁建新 长孙永刚 邬泽鹏 张信一 姜夺玉 胡田亮 《原子能科学技术》 北大核心 2025年第10期2233-2240,共8页
为实现高温下铀氢锆燃料元件的释氢定量分析,利用西安脉冲堆热柱实验孔道建立瞬发γ中子活化检测平台,开展了标准含氢样件的瞬发γ活化分析实验,该测量平台对氢的检测下限为0.4mg,相对不确定度为8.5%。在该系统条件下,对氢化锆实验样品... 为实现高温下铀氢锆燃料元件的释氢定量分析,利用西安脉冲堆热柱实验孔道建立瞬发γ中子活化检测平台,开展了标准含氢样件的瞬发γ活化分析实验,该测量平台对氢的检测下限为0.4mg,相对不确定度为8.5%。在该系统条件下,对氢化锆实验样品在密闭空腔内开展了高温条件下的释氢研究,测量得到了平均温度为757℃和814℃下氢化锆中氢的释放量。相关测量结果和参考文献结果符合较好,该实验的顺利实施为后续铀氢锆燃料和其他金属氢化物的释氢检测提供可靠的实验平台。 展开更多
关键词 氢化锆 高温释氢 瞬发γ中子活化分析
在线阅读 下载PDF
结合提示信号与图结构的对话摘要生成模型
17
作者 金彦亮 冯湫燕 高塬 《计算机工程与应用》 北大核心 2025年第15期241-250,共10页
以对话形式为主的通信方式逐渐普及,对话摘要任务引起越来越多研究者的关注,该任务旨在将复杂的对话文本压缩成简洁的表示形式。在对话文本中,多个对话者之间的交流通常涉及有关某个特定事件的关键信息,且这些信息分布较为分散。然而,... 以对话形式为主的通信方式逐渐普及,对话摘要任务引起越来越多研究者的关注,该任务旨在将复杂的对话文本压缩成简洁的表示形式。在对话文本中,多个对话者之间的交流通常涉及有关某个特定事件的关键信息,且这些信息分布较为分散。然而,现有方法未深入研究对话内容的内在关系和结构,容易遗漏关键信息。针对上述问题,设计了结合提示信号与图结构的对话摘要生成模型,旨在帮助理解对话结构并把握对话中的关键信息,进而提高摘要生成的准确率。该模型基于提示学习引入了离散提示信号,并将其输入提示编码器,旨在利用提示信号协助模型更有针对性地聚焦对话的关键信息(关键词、主题词等)。同时,该模型引入动态图结构,旨在利用对话的结构性信息来捕捉并整合跨句子信息。在SAMSum、QMsum和DialogSum数据集上的实验结果表明,ROUGE-1、ROUGE-2和ROUGE-L得分均取得了显著提升,验证了模型的有效性。 展开更多
关键词 对话摘要 提示学习 提示信号 图结构
在线阅读 下载PDF
基于类别对抗联合学习的跨提示自动作文评分方法
18
作者 张春云 赵洪焱 +3 位作者 邓纪芹 崔超然 董晓琳 陈竹敏 《计算机研究与发展》 北大核心 2025年第5期1190-1204,共15页
自动作文评分(automated essay scoring,AES)能够有效减轻教师的作文评阅负担并为学生提供客观、及时的反馈,是自然语言处理在教育领域的一项重要应用.跨提示AES旨在学习一个可迁移的自动评分模型,使之能够有效为目标提示的作文评分.然... 自动作文评分(automated essay scoring,AES)能够有效减轻教师的作文评阅负担并为学生提供客观、及时的反馈,是自然语言处理在教育领域的一项重要应用.跨提示AES旨在学习一个可迁移的自动评分模型,使之能够有效为目标提示的作文评分.然而,现有的跨提示AES大都是面向目标提示数据可见的场景,通过将源提示和目标提示的特征分布进行对齐,学习提示不变特征表示来学习可迁移到目标提示的评分模型,但是这类方法无法应用于目标提示数据不可见的场景.面向目标提示数据不可见的场景,提出一种基于类别对抗联合学习的跨提示AES方法.一方面,通过对分类和回归联合任务进行联合建模来学习2个任务的共享特征,从而实现二者性能的相互促进;另一方面,不同于现有方法采用提示无关特征来提升模型泛化性能,针对不同提示的类别分布差异引入类别对抗策略,通过对不同提示进行类别级特征对齐,学习不同提示间的细粒度不变特征表示,从而提升模型泛化性能.将所提出方法用于自动学生评估奖(ASAP)和ASAP++数据集,分别对作文的总体评分和属性评分进行预测.实验结果表明,与6种经典方法相比,在平方卡帕(QWK)指标上取得最好的实验效果. 展开更多
关键词 自动作文评分 跨提示 类别对抗 联合建模 领域泛化
在线阅读 下载PDF
基于大语言模型的企业碳排放分析与知识问答系统
19
作者 韩明 曹智轩 +2 位作者 王敬涛 段丽英 王剑宏 《计算机工程与应用》 北大核心 2025年第16期370-382,共13页
随着全球气候变化日益严重,企业碳排放分析成为国际关注的焦点,针对通用大语言模型(large language model,LLM)知识更新滞后,增强生成架构在处理复杂问题时缺乏专业性与准确性,以及大模型生成结果中幻觉率高的问题,通过构建专有知识库,... 随着全球气候变化日益严重,企业碳排放分析成为国际关注的焦点,针对通用大语言模型(large language model,LLM)知识更新滞后,增强生成架构在处理复杂问题时缺乏专业性与准确性,以及大模型生成结果中幻觉率高的问题,通过构建专有知识库,开发了基于大语言模型的企业碳排放分析与知识问答系统。提出了一种多样化索引模块构建方法,构建高质量的知识与法规检索数据集。针对碳排放报告(政策)领域的知识问答任务,提出了自提示检索增强生成架构,集成意图识别、改进的结构化思维链、混合检索技术、高质量提示工程和Text2SQL系统,支持多维度分析企业可持续性报告,为企业碳排放报告(政策)提供了一种高效、精准的知识问答解决方案。通过多层分块机制、文档索引和幻觉识别功能,确保结果的准确性与可验证性,降低了LLM技术在系统中的幻觉率。通过对比实验,所提算法在各模块的协同下在检索增强生成实验中各指标表现优异,对于企业碳排放报告的关键信息抽取和报告评价,尤其是长文本处理具有明显的优势。 展开更多
关键词 大语言模型(LLM) 知识问答系统 大模型幻觉 信息检索 提示学习
在线阅读 下载PDF
基于大语言模型的矿山事故知识图谱构建 被引量:2
20
作者 张朋杨 生龙 +2 位作者 王巍 魏忠诚 赵继军 《工矿自动化》 北大核心 2025年第2期76-83,105,共9页
现有矿山领域知识图谱构建方法在预训练阶段需要大量人工标注的高质量监督数据,人力成本高且效率低。大语言模型(LLM)可在少量人工标注的高质量数据下显著提高信息抽取的质量且效率较高,然而LLM结合Prompt的方法会产生灾难性遗忘问题。... 现有矿山领域知识图谱构建方法在预训练阶段需要大量人工标注的高质量监督数据,人力成本高且效率低。大语言模型(LLM)可在少量人工标注的高质量数据下显著提高信息抽取的质量且效率较高,然而LLM结合Prompt的方法会产生灾难性遗忘问题。针对上述问题,将图结构信息嵌入到Prompt模板中,提出了图结构Prompt,通过在LLM上嵌入图结构Prompt,实现基于LLM的矿山事故知识图谱高质量构建。首先,收集煤矿安全生产网公开的矿山事故报告并进行格式修正、冗余信息剔除等预处理。其次,利用LLM挖掘矿山事故报告文本中蕴含的知识,对矿山事故报告文本中的实体及实体间关系进行K−means聚类,完成矿山事故本体构建。然后,依据构建的本体进行少量数据标注,标注数据用于LLM的学习与微调。最后,采用嵌入图结构Prompt的LLM进行信息抽取,实例化实体关系三元组,从而构建矿山事故知识图谱。实验结果表明:在实体抽取和关系抽取任务中,LLM的表现优于通用信息抽取(UIE)模型,且嵌入图结构Prompt的LLM在精确率、召回率、F1值方面均高于未嵌入图结构Prompt的LLM。 展开更多
关键词 矿山事故 知识图谱 大语言模型 图结构prompt 本体构建 信息抽取
在线阅读 下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部