Evolutionary computation techniques have mostly been used to solve various optimization problems, and it is well known that graph isomorphism problem (GIP) is a nondeterministic polynomial problem. A simulated annea...Evolutionary computation techniques have mostly been used to solve various optimization problems, and it is well known that graph isomorphism problem (GIP) is a nondeterministic polynomial problem. A simulated annealing (SA) algorithm for detecting graph isomorphism is proposed, and the proposed SA algorithm is well suited to deal with random graphs with large size. To verify the validity of the proposed SA algorithm, simulations are performed on three pairs of small graphs and four pairs of large random graphs with edge densities 0.5, 0.1, and 0.01, respectively. The simulation results show that the proposed SA algorithm can detect graph isomorphism with a high probability.展开更多
图是一种非常重要的数据结构形式,被广泛用于社交网络、交通网络和搜索引擎等领域。随着图数据规模爆发式增长,存储容量受限,分布式图计算成为处理大规模图数据的焦点。宽度优先搜索(breadth first search,BFS)算法是图遍历和许多图分...图是一种非常重要的数据结构形式,被广泛用于社交网络、交通网络和搜索引擎等领域。随着图数据规模爆发式增长,存储容量受限,分布式图计算成为处理大规模图数据的焦点。宽度优先搜索(breadth first search,BFS)算法是图遍历和许多图分析算法的基础,而在分布式图计算过程中存在严重的通信开销。针对上述问题,本文提出了一种综合的数据压缩编码优化方案,结合位图和变长压缩数组,通过更高的压缩率来降低数据通信开销;此外,还提出了一种点对点异步环形通信策略,进一步降低分布式图计算中计算-通信的同步开销。通过这些优化手段,本文在8节点的分布式集群上对优化后BFS算法的性能进行了系统评估,结果表明,当图数据规模为28时,优化后的BFS算法平均性能为46.79亿条边每秒遍历(giga-traversed edges per second,GTEPS),性能比优化前提升了接近7.82%。展开更多
针对大多数基于图神经网络(Graph Neural Network,GNN)的社区搜索方法中存在的时间开销巨大和“搭便车”效应问题,本文提出一种基于图组合优化的高效社区搜索模型(Efficient Community Search Based on Graph Combinatorial Optimizatio...针对大多数基于图神经网络(Graph Neural Network,GNN)的社区搜索方法中存在的时间开销巨大和“搭便车”效应问题,本文提出一种基于图组合优化的高效社区搜索模型(Efficient Community Search Based on Graph Combinatorial Optimization,CS-ROMF).该模型设计基于GNN的社区定位器来快速定位查询节点的潜在社区,减少时间开销.在此基础上设计基于强化学习(Reinforcement Learning,RL)的社区优化器调整候选社区的结构,减轻“搭便车”效应.在5个具有真实社区的数据集上进行大量实验,结果表明CS-ROMF在所有评估指标上均优于基线模型.其中,相比结果最好的基线模型,CS-ROMF在F_(1)值、Jaccard值以及NMI上分别最高提升14.99%、20.67%和21.37%,表明CS-ROMF减轻了“搭便车”效应.同时,CS-ROMF能够显著提升搜索效率,其运行速度比基于GNN的基线模型最多快10倍.展开更多
基金the National Natural Science Foundation of China (60373089, 60674106, and 60533010)the National High Technology Research and Development "863" Program (2006AA01Z104)
文摘Evolutionary computation techniques have mostly been used to solve various optimization problems, and it is well known that graph isomorphism problem (GIP) is a nondeterministic polynomial problem. A simulated annealing (SA) algorithm for detecting graph isomorphism is proposed, and the proposed SA algorithm is well suited to deal with random graphs with large size. To verify the validity of the proposed SA algorithm, simulations are performed on three pairs of small graphs and four pairs of large random graphs with edge densities 0.5, 0.1, and 0.01, respectively. The simulation results show that the proposed SA algorithm can detect graph isomorphism with a high probability.
文摘图是一种非常重要的数据结构形式,被广泛用于社交网络、交通网络和搜索引擎等领域。随着图数据规模爆发式增长,存储容量受限,分布式图计算成为处理大规模图数据的焦点。宽度优先搜索(breadth first search,BFS)算法是图遍历和许多图分析算法的基础,而在分布式图计算过程中存在严重的通信开销。针对上述问题,本文提出了一种综合的数据压缩编码优化方案,结合位图和变长压缩数组,通过更高的压缩率来降低数据通信开销;此外,还提出了一种点对点异步环形通信策略,进一步降低分布式图计算中计算-通信的同步开销。通过这些优化手段,本文在8节点的分布式集群上对优化后BFS算法的性能进行了系统评估,结果表明,当图数据规模为28时,优化后的BFS算法平均性能为46.79亿条边每秒遍历(giga-traversed edges per second,GTEPS),性能比优化前提升了接近7.82%。
文摘针对大多数基于图神经网络(Graph Neural Network,GNN)的社区搜索方法中存在的时间开销巨大和“搭便车”效应问题,本文提出一种基于图组合优化的高效社区搜索模型(Efficient Community Search Based on Graph Combinatorial Optimization,CS-ROMF).该模型设计基于GNN的社区定位器来快速定位查询节点的潜在社区,减少时间开销.在此基础上设计基于强化学习(Reinforcement Learning,RL)的社区优化器调整候选社区的结构,减轻“搭便车”效应.在5个具有真实社区的数据集上进行大量实验,结果表明CS-ROMF在所有评估指标上均优于基线模型.其中,相比结果最好的基线模型,CS-ROMF在F_(1)值、Jaccard值以及NMI上分别最高提升14.99%、20.67%和21.37%,表明CS-ROMF减轻了“搭便车”效应.同时,CS-ROMF能够显著提升搜索效率,其运行速度比基于GNN的基线模型最多快10倍.