以旅游大数据为基础,考虑长时间范围内的滞后效应以及不同搜索强度指数(Search Intensity Index,SII)之间的多任务影响,提出一种基于大数据的多任务旅游信息分析(Multi-tasking Tourism Information Analysis Based on Big Data,MTIABD...以旅游大数据为基础,考虑长时间范围内的滞后效应以及不同搜索强度指数(Search Intensity Index,SII)之间的多任务影响,提出一种基于大数据的多任务旅游信息分析(Multi-tasking Tourism Information Analysis Based on Big Data,MTIABD)框架。使用融合信息重排序技术预测旅游需求,具体根据图引导结构模拟历史变量对未来变量的滞后影响。每个变量通过时间维度上的卷积神经网络(Convolutional Neural Network,CNN)进行独立编码,利用二分图动态建模滞后效应,通过图聚合进行挖掘,实现对旅游需求的精准预测。基于上述技术,构建旅游需求预测系统,旅游者能够根据需求检索不同景点的信息。在真实数据集上进行大量实验,结果表明所提出的MTIABD框架在一步和多步预测方面均优于现有方法。在平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)指标下,相较于基于实例的多变量时间序列图预测框架(Instance-wise Graph-rased Framework for Multivariate Time Series Forecasting,IGMTF),MTIABD在HK-2021数据集上的性能提高了16.75%,在MO-2021数据集上的性能提高了19.79%。展开更多
大语言模型(large language model,LLM)技术热潮对数据质量的要求提升到了一个新的高度.在现实场景中,数据通常来源不同且高度相关.但由于数据隐私安全问题,跨域异质数据往往不允许集中共享,难以被LLM高效利用.鉴于此,提出了一种LLM和...大语言模型(large language model,LLM)技术热潮对数据质量的要求提升到了一个新的高度.在现实场景中,数据通常来源不同且高度相关.但由于数据隐私安全问题,跨域异质数据往往不允许集中共享,难以被LLM高效利用.鉴于此,提出了一种LLM和知识图谱(knowledge graph,KG)协同的跨域异质数据查询框架,在LLM+KG的范式下给出跨域异质数据查询的一个治理方案.为确保LLM能够适应多场景中的跨域异质数据,首先采用适配器对跨域异质数据进行融合,并构建相应的知识图谱.为提高查询效率,引入线性知识图,并提出同源知识图抽取算法HKGE来实现知识图谱的重构,可显著提高查询性能,确保跨域异质数据治理的高效性.进而,为保证多域数据查询的高可信度,提出可信候选子图匹配算法Trust HKGM,用于检验跨域同源数据的置信度计算和可信候选子图匹配,剔除低质量节点.最后,提出基于线性知识图提示的多域数据查询算法MKLGP,实现LLM+KG范式下的高效可信跨域查询.该方法在多个真实数据集上进行了广泛实验,验证了所提方法的有效性和高效性.展开更多
文摘以旅游大数据为基础,考虑长时间范围内的滞后效应以及不同搜索强度指数(Search Intensity Index,SII)之间的多任务影响,提出一种基于大数据的多任务旅游信息分析(Multi-tasking Tourism Information Analysis Based on Big Data,MTIABD)框架。使用融合信息重排序技术预测旅游需求,具体根据图引导结构模拟历史变量对未来变量的滞后影响。每个变量通过时间维度上的卷积神经网络(Convolutional Neural Network,CNN)进行独立编码,利用二分图动态建模滞后效应,通过图聚合进行挖掘,实现对旅游需求的精准预测。基于上述技术,构建旅游需求预测系统,旅游者能够根据需求检索不同景点的信息。在真实数据集上进行大量实验,结果表明所提出的MTIABD框架在一步和多步预测方面均优于现有方法。在平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)指标下,相较于基于实例的多变量时间序列图预测框架(Instance-wise Graph-rased Framework for Multivariate Time Series Forecasting,IGMTF),MTIABD在HK-2021数据集上的性能提高了16.75%,在MO-2021数据集上的性能提高了19.79%。
文摘大语言模型(large language model,LLM)技术热潮对数据质量的要求提升到了一个新的高度.在现实场景中,数据通常来源不同且高度相关.但由于数据隐私安全问题,跨域异质数据往往不允许集中共享,难以被LLM高效利用.鉴于此,提出了一种LLM和知识图谱(knowledge graph,KG)协同的跨域异质数据查询框架,在LLM+KG的范式下给出跨域异质数据查询的一个治理方案.为确保LLM能够适应多场景中的跨域异质数据,首先采用适配器对跨域异质数据进行融合,并构建相应的知识图谱.为提高查询效率,引入线性知识图,并提出同源知识图抽取算法HKGE来实现知识图谱的重构,可显著提高查询性能,确保跨域异质数据治理的高效性.进而,为保证多域数据查询的高可信度,提出可信候选子图匹配算法Trust HKGM,用于检验跨域同源数据的置信度计算和可信候选子图匹配,剔除低质量节点.最后,提出基于线性知识图提示的多域数据查询算法MKLGP,实现LLM+KG范式下的高效可信跨域查询.该方法在多个真实数据集上进行了广泛实验,验证了所提方法的有效性和高效性.