识别药物-靶标相互作用(DTI)是药物再利用和创新药物发现中不可或缺的关键步骤,目前已经有许多基于序列的计算方法被广泛应用于DTI预测;然而,在以往的基于序列的研究中,特征提取通常只关注序列本身,忽视了异构信息网络,如药物-药物相互...识别药物-靶标相互作用(DTI)是药物再利用和创新药物发现中不可或缺的关键步骤,目前已经有许多基于序列的计算方法被广泛应用于DTI预测;然而,在以往的基于序列的研究中,特征提取通常只关注序列本身,忽视了异构信息网络,如药物-药物相互作用网络、药物-靶标相互作用网络等。因此,提出一种基于序列和多视角网络进行DTI预测的新方法 SMN-DTI(prediction of Drug-Target Interactions based on Sequence and Multi-view Networks)。该方法使用变分自编码器(VAE)学习药物SMILES(Simplified Molecular-Input Line-Entry System)字符串和靶标氨基酸序列的嵌入矩阵;随后,利用具有两级注意力机制的异构图注意力网络(HAN)从节点和语义2个视角的网络中聚集来自药物或靶标的不同邻居的信息,并得到最终的嵌入。在2个广泛用于DTI预测的基准数据集Hetero-seq-A和Hetero-seqB上对SMN-DTI和基准方法进行评估的结果表明,在3种不同正负样本比例下SMN-DTI均取得了最优的特征曲线下面积(AUC)和精确召回曲线下面积(AUPR)。可见,SMN-DTI比目前主流的先进预测方法具有更好的性能。展开更多
变分图自编码器是图嵌入研究中重要的深度学习模型,但存在着先验正态分布缺陷、训练过程中容易出现后验塌陷等问题.本文从建立云概念空间与隐空间的映射关系入手,引入云模型数字特征对网络中的节点进行不确定性概念表示,设计了一种基于...变分图自编码器是图嵌入研究中重要的深度学习模型,但存在着先验正态分布缺陷、训练过程中容易出现后验塌陷等问题.本文从建立云概念空间与隐空间的映射关系入手,引入云模型数字特征对网络中的节点进行不确定性概念表示,设计了一种基于多维云模型的变分图自编码器(Variational Graph Autoencoder based on Multidimensional Cloud Model,MCM-VGAE).该模型实现了隐空间的多维云概念嵌入及相应的漂移性损失度量,将先验分布扩展为泛正态分布,利用多维正向云发生器及云包络带修正采样算法实现了重参数化过程,有效缓解了后验塌陷现象.在应用效果上,模型在多类型数据集上的链路预测、节点聚类、图嵌入可视化实验表现均优于基准模型,进一步说明了方法的普适有效性.展开更多
在网络表示学习的研究中,数据的不完整性问题是一个重要问题,该问题使现有的表示学习算法难以达到预期效果。近年来,不少学者针对此类问题提出了解决方法,这些方法大多仅考虑标签信息本身的缺失问题,对数据不平衡性涉及较少,尤其是某一...在网络表示学习的研究中,数据的不完整性问题是一个重要问题,该问题使现有的表示学习算法难以达到预期效果。近年来,不少学者针对此类问题提出了解决方法,这些方法大多仅考虑标签信息本身的缺失问题,对数据不平衡性涉及较少,尤其是某一类别标签完全缺失的完全不平衡问题。解决这类问题的学习算法并不完善,主要存在的问题是在聚合邻域特征时侧重于考虑网络结构信息,未利用属性特征与语义特征间的关系来增强表示结果。为了解决以上问题,提出了融合属性特征与结构特征的SECT(Semantic Information Enhanced Network Embedding with Completely Imbalanced Labels)方法。首先,在考虑属性空间和语义空间关系的基础上,引入注意力机制进行监督学习,得到语义信息向量;然后,应用变分自编码器无监督提取结构特征以增强算法的鲁棒性;最后,在嵌入空间中融合语义与结构两种信息。将使用SECT算法得到的网络向量表示在Cora,Citeseer等数据集上进行测试,应用于节点分类任务时与RECT和GCN等算法相比,取得了0.86%~1.97%的效果提升。网络向量表示的可视化结果显示,与其他算法相比,SECT算法的类间距离变大,类簇内部更加紧凑,能较清晰地区分类别边界。实验结果表明了SECT算法的有效性,SECT得益于更好地在低维嵌入空间中融合语义信息,有效提升了存在完全不平衡标签情况下的节点分类任务性能。展开更多
文摘识别药物-靶标相互作用(DTI)是药物再利用和创新药物发现中不可或缺的关键步骤,目前已经有许多基于序列的计算方法被广泛应用于DTI预测;然而,在以往的基于序列的研究中,特征提取通常只关注序列本身,忽视了异构信息网络,如药物-药物相互作用网络、药物-靶标相互作用网络等。因此,提出一种基于序列和多视角网络进行DTI预测的新方法 SMN-DTI(prediction of Drug-Target Interactions based on Sequence and Multi-view Networks)。该方法使用变分自编码器(VAE)学习药物SMILES(Simplified Molecular-Input Line-Entry System)字符串和靶标氨基酸序列的嵌入矩阵;随后,利用具有两级注意力机制的异构图注意力网络(HAN)从节点和语义2个视角的网络中聚集来自药物或靶标的不同邻居的信息,并得到最终的嵌入。在2个广泛用于DTI预测的基准数据集Hetero-seq-A和Hetero-seqB上对SMN-DTI和基准方法进行评估的结果表明,在3种不同正负样本比例下SMN-DTI均取得了最优的特征曲线下面积(AUC)和精确召回曲线下面积(AUPR)。可见,SMN-DTI比目前主流的先进预测方法具有更好的性能。
文摘变分图自编码器是图嵌入研究中重要的深度学习模型,但存在着先验正态分布缺陷、训练过程中容易出现后验塌陷等问题.本文从建立云概念空间与隐空间的映射关系入手,引入云模型数字特征对网络中的节点进行不确定性概念表示,设计了一种基于多维云模型的变分图自编码器(Variational Graph Autoencoder based on Multidimensional Cloud Model,MCM-VGAE).该模型实现了隐空间的多维云概念嵌入及相应的漂移性损失度量,将先验分布扩展为泛正态分布,利用多维正向云发生器及云包络带修正采样算法实现了重参数化过程,有效缓解了后验塌陷现象.在应用效果上,模型在多类型数据集上的链路预测、节点聚类、图嵌入可视化实验表现均优于基准模型,进一步说明了方法的普适有效性.
文摘在网络表示学习的研究中,数据的不完整性问题是一个重要问题,该问题使现有的表示学习算法难以达到预期效果。近年来,不少学者针对此类问题提出了解决方法,这些方法大多仅考虑标签信息本身的缺失问题,对数据不平衡性涉及较少,尤其是某一类别标签完全缺失的完全不平衡问题。解决这类问题的学习算法并不完善,主要存在的问题是在聚合邻域特征时侧重于考虑网络结构信息,未利用属性特征与语义特征间的关系来增强表示结果。为了解决以上问题,提出了融合属性特征与结构特征的SECT(Semantic Information Enhanced Network Embedding with Completely Imbalanced Labels)方法。首先,在考虑属性空间和语义空间关系的基础上,引入注意力机制进行监督学习,得到语义信息向量;然后,应用变分自编码器无监督提取结构特征以增强算法的鲁棒性;最后,在嵌入空间中融合语义与结构两种信息。将使用SECT算法得到的网络向量表示在Cora,Citeseer等数据集上进行测试,应用于节点分类任务时与RECT和GCN等算法相比,取得了0.86%~1.97%的效果提升。网络向量表示的可视化结果显示,与其他算法相比,SECT算法的类间距离变大,类簇内部更加紧凑,能较清晰地区分类别边界。实验结果表明了SECT算法的有效性,SECT得益于更好地在低维嵌入空间中融合语义信息,有效提升了存在完全不平衡标签情况下的节点分类任务性能。