With limited number of labeled samples,hyperspectral image(HSI)classification is a difficult Problem in current research.The graph neural network(GNN)has emerged as an approach to semi-supervised classification,and th...With limited number of labeled samples,hyperspectral image(HSI)classification is a difficult Problem in current research.The graph neural network(GNN)has emerged as an approach to semi-supervised classification,and the application of GNN to hyperspectral images has attracted much attention.However,in the existing GNN-based methods a single graph neural network or graph filter is mainly used to extract HSI features,which does not take full advantage of various graph neural networks(graph filters).Moreover,the traditional GNNs have the problem of oversmoothing.To alleviate these shortcomings,we introduce a deep hybrid multi-graph neural network(DHMG),where two different graph filters,i.e.,the spectral filter and the autoregressive moving average(ARMA)filter,are utilized in two branches.The former can well extract the spectral features of the nodes,and the latter has a good suppression effect on graph noise.The network realizes information interaction between the two branches and takes good advantage of different graph filters.In addition,to address the problem of oversmoothing,a dense network is proposed,where the local graph features are preserved.The dense structure satisfies the needs of different classification targets presenting different features.Finally,we introduce a GraphSAGEbased network to refine the graph features produced by the deep hybrid network.Extensive experiments on three public HSI datasets strongly demonstrate that the DHMG dramatically outperforms the state-ofthe-art models.展开更多
针对现有多维时间序列数据(multivariate time series,MTS)预测中变量间依赖关系捕获能力不足和时间序列数据多通道信息利用不充分的问题,提出一种融合双注意力机制的多维时间序列预测模型(feature fusion and dual attention mechanism...针对现有多维时间序列数据(multivariate time series,MTS)预测中变量间依赖关系捕获能力不足和时间序列数据多通道信息利用不充分的问题,提出一种融合双注意力机制的多维时间序列预测模型(feature fusion and dual attention mechanism based GNN,FFDA-GNN)。该模型将图神经网络与空间注意力机制融合,用于增强多变量之间依赖关系捕获能力;利用并行的多层膨胀卷积和通道注意力机制,对时间序列数据进行多通道的特征提取,实现对时间序列数据多通道信息的充分利用,从而提升预测性能。在经济、电力、交通3个领域数据集上与基准模型进行对比实验,该模型预测精度优于其他基准方法,有良好的可行性。展开更多
In multi-view image localization task,the features of the images captured from different views should be fused properly.This paper considers the classification-based image localization problem.We propose the relationa...In multi-view image localization task,the features of the images captured from different views should be fused properly.This paper considers the classification-based image localization problem.We propose the relational graph location network(RGLN)to perform this task.In this network,we propose a heterogeneous graph construction approach for graph classification tasks,which aims to describe the location in a more appropriate way,thereby improving the expression ability of the location representation module.Experiments show that the expression ability of the proposed graph construction approach outperforms the compared methods by a large margin.In addition,the proposed localization method outperforms the compared localization methods by around 1.7%in terms of meter-level accuracy.展开更多
文摘With limited number of labeled samples,hyperspectral image(HSI)classification is a difficult Problem in current research.The graph neural network(GNN)has emerged as an approach to semi-supervised classification,and the application of GNN to hyperspectral images has attracted much attention.However,in the existing GNN-based methods a single graph neural network or graph filter is mainly used to extract HSI features,which does not take full advantage of various graph neural networks(graph filters).Moreover,the traditional GNNs have the problem of oversmoothing.To alleviate these shortcomings,we introduce a deep hybrid multi-graph neural network(DHMG),where two different graph filters,i.e.,the spectral filter and the autoregressive moving average(ARMA)filter,are utilized in two branches.The former can well extract the spectral features of the nodes,and the latter has a good suppression effect on graph noise.The network realizes information interaction between the two branches and takes good advantage of different graph filters.In addition,to address the problem of oversmoothing,a dense network is proposed,where the local graph features are preserved.The dense structure satisfies the needs of different classification targets presenting different features.Finally,we introduce a GraphSAGEbased network to refine the graph features produced by the deep hybrid network.Extensive experiments on three public HSI datasets strongly demonstrate that the DHMG dramatically outperforms the state-ofthe-art models.
文摘针对现有多维时间序列数据(multivariate time series,MTS)预测中变量间依赖关系捕获能力不足和时间序列数据多通道信息利用不充分的问题,提出一种融合双注意力机制的多维时间序列预测模型(feature fusion and dual attention mechanism based GNN,FFDA-GNN)。该模型将图神经网络与空间注意力机制融合,用于增强多变量之间依赖关系捕获能力;利用并行的多层膨胀卷积和通道注意力机制,对时间序列数据进行多通道的特征提取,实现对时间序列数据多通道信息的充分利用,从而提升预测性能。在经济、电力、交通3个领域数据集上与基准模型进行对比实验,该模型预测精度优于其他基准方法,有良好的可行性。
文摘In multi-view image localization task,the features of the images captured from different views should be fused properly.This paper considers the classification-based image localization problem.We propose the relational graph location network(RGLN)to perform this task.In this network,we propose a heterogeneous graph construction approach for graph classification tasks,which aims to describe the location in a more appropriate way,thereby improving the expression ability of the location representation module.Experiments show that the expression ability of the proposed graph construction approach outperforms the compared methods by a large margin.In addition,the proposed localization method outperforms the compared localization methods by around 1.7%in terms of meter-level accuracy.