为解决文本类地铁应急处置流程存在的流程顺序关系不明确、流程执行人员模糊等问题,提出了基于BiLSTM-CRF(Bidirectional Long Short-Term Memory-Conditional Random Field)的地铁应急处置知识抽取与推理方法。首先,利用BiLSTM-CRF方...为解决文本类地铁应急处置流程存在的流程顺序关系不明确、流程执行人员模糊等问题,提出了基于BiLSTM-CRF(Bidirectional Long Short-Term Memory-Conditional Random Field)的地铁应急处置知识抽取与推理方法。首先,利用BiLSTM-CRF方法对地铁应急处置流程的文本资料进行命名实体识别,完成文本资料的知识抽取;其次,选用TransD模型对识别后实体数据进行知识推理,从而完成以实体和属性对为节点、关系对为边的知识图谱构建;最后,利用Neo4j图数据库对构建的地铁应急处置流程知识图谱进行了可视化展示和案例分析。研究结果表明,基于BiLSTM-CRF的知识抽取模型的精确率、召回率和F1值均达到了90%以上,且基于BiLSTM-CRF的TransD模型的推理结果准确率提升了22.92%,保证了知识图谱构建的准确性,可为地铁应急管理提供决策支持。展开更多
针对航空发动机剩余使用寿命(RUL)预测方法空间特征提取不充分、时间特征利用不充分,导致RUL预测准确性较低的问题,提出一种融合注意力机制的时空图卷积网络模型GCNBL-A3T(Graph Convolutional Network combined with Bidirectional Lon...针对航空发动机剩余使用寿命(RUL)预测方法空间特征提取不充分、时间特征利用不充分,导致RUL预测准确性较低的问题,提出一种融合注意力机制的时空图卷积网络模型GCNBL-A3T(Graph Convolutional Network combined with Bidirectional Long short-term memory and ATTenTion mechanism)。首先,使用一维卷积神经网络(1D-CNN)提取初始特征;其次,依次使用图卷积网络(GCN)和双向长短期记忆(Bi-LSTM)网络分别提取空间特征和时间特征;再次,利用自注意力机制处理特征并重新分配权重;最后,输入全连接网络获得RUL预测结果。使用商用模块化航空推进系统仿真(C-MAPSS)数据集验证所提模型的有效性。实验结果显示,与先进模型相比,所提模型的Score分数在3个数据子集上取得最小值,在1个数据子集上取得次小值;均方根误差(RMSE)在1个数据子集上取得最小值,在3个数据子集上取得次小值。消融实验结果也验证了所提模型的各模块能有效提升预测精度。展开更多
针对图像描述方法中对图像文本信息的遗忘及利用不充分问题,提出了基于场景图感知的跨模态交互网络(SGC-Net)。首先,使用场景图作为图像的视觉特征并使用图卷积网络(GCN)进行特征融合,从而使图像的视觉特征和文本特征位于同一特征空间;...针对图像描述方法中对图像文本信息的遗忘及利用不充分问题,提出了基于场景图感知的跨模态交互网络(SGC-Net)。首先,使用场景图作为图像的视觉特征并使用图卷积网络(GCN)进行特征融合,从而使图像的视觉特征和文本特征位于同一特征空间;其次,保存模型生成的文本序列,并添加对应的位置信息作为图像的文本特征,以解决单层长短期记忆(LSTM)网络导致的文本特征丢失的问题;最后,使用自注意力机制提取出重要的图像信息和文本信息后并对它们进行融合,以解决对图像信息过分依赖以及对文本信息利用不足的问题。在Flickr30K和MSCOCO(MicroSoft Common Objects in COntext)数据集上进行实验的结果表明,与Sub-GC相比,SGC-Net在BLEU1(BiLingual Evaluation Understudy with 1-gram)、BLEU4(BiLingual Evaluation Understudy with 4-grams)、METEOR(Metric for Evaluation of Translation with Explicit ORdering)、ROUGE(Recall-Oriented Understudy for Gisting Evaluation)和SPICE(Semantic Propositional Image Caption Evaluation)指标上分别提升了1.1、0.9、0.3、0.7、0.4和0.3、0.1、0.3、0.5、0.6。可见,SGC-Net所使用的方法能够有效提升模型的图像描述性能及生成描述的流畅度。展开更多
针对现有小麦条锈病预测方法没有利用病害发生因素之间的语义信息,存在预测难度大、准确率低等问题,利用知识图谱(Knowledge Graph,KG)和双向长短时记忆网络(Bi-directional Long Short-Term Memory,Bi-LSTM)处理多源异构复杂数据的各...针对现有小麦条锈病预测方法没有利用病害发生因素之间的语义信息,存在预测难度大、准确率低等问题,利用知识图谱(Knowledge Graph,KG)和双向长短时记忆网络(Bi-directional Long Short-Term Memory,Bi-LSTM)处理多源异构复杂数据的各自优势,提出一种基于KG与Bi-LSTM结合的小麦条锈病预测方法。首先,构建小麦条锈病知识图谱,将与小麦条锈病发生相关的环境信息转换为特征向量;其次,利用特征向量训练Bi-LSTM模型,得到基于Bi-LSTM的小麦条锈病预测模型;最后,利用小麦条锈病数据库数据进行试验。结果表明,KG丰富了进行病害预测所描述的语义信息,提升了Bi-LSTM提取高层病害预测特征的能力,从而提高了病害预测的准确率。在小麦条锈病数据库上的预测准确率达到93.21%,比基于Bi-LSTM的病害预测方法提高了4.5个百分点。该方法能较好预测小麦条锈病,为小麦条锈病的预报预警和综合防治提供科学依据。展开更多
文摘为解决文本类地铁应急处置流程存在的流程顺序关系不明确、流程执行人员模糊等问题,提出了基于BiLSTM-CRF(Bidirectional Long Short-Term Memory-Conditional Random Field)的地铁应急处置知识抽取与推理方法。首先,利用BiLSTM-CRF方法对地铁应急处置流程的文本资料进行命名实体识别,完成文本资料的知识抽取;其次,选用TransD模型对识别后实体数据进行知识推理,从而完成以实体和属性对为节点、关系对为边的知识图谱构建;最后,利用Neo4j图数据库对构建的地铁应急处置流程知识图谱进行了可视化展示和案例分析。研究结果表明,基于BiLSTM-CRF的知识抽取模型的精确率、召回率和F1值均达到了90%以上,且基于BiLSTM-CRF的TransD模型的推理结果准确率提升了22.92%,保证了知识图谱构建的准确性,可为地铁应急管理提供决策支持。
文摘针对航空发动机剩余使用寿命(RUL)预测方法空间特征提取不充分、时间特征利用不充分,导致RUL预测准确性较低的问题,提出一种融合注意力机制的时空图卷积网络模型GCNBL-A3T(Graph Convolutional Network combined with Bidirectional Long short-term memory and ATTenTion mechanism)。首先,使用一维卷积神经网络(1D-CNN)提取初始特征;其次,依次使用图卷积网络(GCN)和双向长短期记忆(Bi-LSTM)网络分别提取空间特征和时间特征;再次,利用自注意力机制处理特征并重新分配权重;最后,输入全连接网络获得RUL预测结果。使用商用模块化航空推进系统仿真(C-MAPSS)数据集验证所提模型的有效性。实验结果显示,与先进模型相比,所提模型的Score分数在3个数据子集上取得最小值,在1个数据子集上取得次小值;均方根误差(RMSE)在1个数据子集上取得最小值,在3个数据子集上取得次小值。消融实验结果也验证了所提模型的各模块能有效提升预测精度。
文摘针对图像描述方法中对图像文本信息的遗忘及利用不充分问题,提出了基于场景图感知的跨模态交互网络(SGC-Net)。首先,使用场景图作为图像的视觉特征并使用图卷积网络(GCN)进行特征融合,从而使图像的视觉特征和文本特征位于同一特征空间;其次,保存模型生成的文本序列,并添加对应的位置信息作为图像的文本特征,以解决单层长短期记忆(LSTM)网络导致的文本特征丢失的问题;最后,使用自注意力机制提取出重要的图像信息和文本信息后并对它们进行融合,以解决对图像信息过分依赖以及对文本信息利用不足的问题。在Flickr30K和MSCOCO(MicroSoft Common Objects in COntext)数据集上进行实验的结果表明,与Sub-GC相比,SGC-Net在BLEU1(BiLingual Evaluation Understudy with 1-gram)、BLEU4(BiLingual Evaluation Understudy with 4-grams)、METEOR(Metric for Evaluation of Translation with Explicit ORdering)、ROUGE(Recall-Oriented Understudy for Gisting Evaluation)和SPICE(Semantic Propositional Image Caption Evaluation)指标上分别提升了1.1、0.9、0.3、0.7、0.4和0.3、0.1、0.3、0.5、0.6。可见,SGC-Net所使用的方法能够有效提升模型的图像描述性能及生成描述的流畅度。
文摘针对现有小麦条锈病预测方法没有利用病害发生因素之间的语义信息,存在预测难度大、准确率低等问题,利用知识图谱(Knowledge Graph,KG)和双向长短时记忆网络(Bi-directional Long Short-Term Memory,Bi-LSTM)处理多源异构复杂数据的各自优势,提出一种基于KG与Bi-LSTM结合的小麦条锈病预测方法。首先,构建小麦条锈病知识图谱,将与小麦条锈病发生相关的环境信息转换为特征向量;其次,利用特征向量训练Bi-LSTM模型,得到基于Bi-LSTM的小麦条锈病预测模型;最后,利用小麦条锈病数据库数据进行试验。结果表明,KG丰富了进行病害预测所描述的语义信息,提升了Bi-LSTM提取高层病害预测特征的能力,从而提高了病害预测的准确率。在小麦条锈病数据库上的预测准确率达到93.21%,比基于Bi-LSTM的病害预测方法提高了4.5个百分点。该方法能较好预测小麦条锈病,为小麦条锈病的预报预警和综合防治提供科学依据。