在邻域粗糙集中,基于信息度量的属性约简具有重要应用意义.然而,条件邻域熵具有粒化非单调性,故其属性约简具有应用局限性.对此,采用粒计算技术及相关的3层粒结构,构建具有粒化单调性的条件邻域熵,进而研究其相关属性约简.首先,揭示条...在邻域粗糙集中,基于信息度量的属性约简具有重要应用意义.然而,条件邻域熵具有粒化非单调性,故其属性约简具有应用局限性.对此,采用粒计算技术及相关的3层粒结构,构建具有粒化单调性的条件邻域熵,进而研究其相关属性约简.首先,揭示条件邻域熵的粒化非单调性及其根源;其次,采用3层粒结构,自底向上构建一种新型条件邻域熵,获得其粒化单调性;进而,基于粒化单调的条件邻域熵,建立属性约简及启发式约简算法;最后,采用UCI(University of CaliforniaIrvine)数据实验,验证改进条件邻域熵的单调性与启发式约简算法的有效性.所得结果表明:新建条件邻域熵具有粒化单调性,改进了条件邻域熵,其诱导的属性约简具有应用前景.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.60703013 (国家自然科学基金)the Development Program for Outstanding Young Teachers in Harbin Institute of Technology of China under Grant HITQNJS.2007.017 (哈尔滨工业大学优秀青年教师培养计划) the Scientific Research Foundation of Harbin Institute Technology of China under Grant No.HIT2003.35 (哈尔滨工业大学校基金)
文摘在邻域粗糙集中,基于信息度量的属性约简具有重要应用意义.然而,条件邻域熵具有粒化非单调性,故其属性约简具有应用局限性.对此,采用粒计算技术及相关的3层粒结构,构建具有粒化单调性的条件邻域熵,进而研究其相关属性约简.首先,揭示条件邻域熵的粒化非单调性及其根源;其次,采用3层粒结构,自底向上构建一种新型条件邻域熵,获得其粒化单调性;进而,基于粒化单调的条件邻域熵,建立属性约简及启发式约简算法;最后,采用UCI(University of CaliforniaIrvine)数据实验,验证改进条件邻域熵的单调性与启发式约简算法的有效性.所得结果表明:新建条件邻域熵具有粒化单调性,改进了条件邻域熵,其诱导的属性约简具有应用前景.