期刊文献+
共找到69篇文章
< 1 2 4 >
每页显示 20 50 100
基于GAF-ResNet50的配电网故障区段定位
1
作者 石昱烜 席燕辉 张伟杰 《电力科学与技术学报》 北大核心 2025年第2期122-130,149,共10页
配电线路是现代电力系统的组成部分,直接影响着供电的安全和稳定。配电网故障定位分为对故障点的精准定位与区段定位两种。针对配电网结构的复杂性,提出基于GAF-ResNet50的配电网故障区段定位方法。该方法通过格拉姆角场算法,将一维时... 配电线路是现代电力系统的组成部分,直接影响着供电的安全和稳定。配电网故障定位分为对故障点的精准定位与区段定位两种。针对配电网结构的复杂性,提出基于GAF-ResNet50的配电网故障区段定位方法。该方法通过格拉姆角场算法,将一维时间序列转换成二维(Gramian angular field,GAF)图像,并利用残差神经网络的框架,从GAF图像中提取信号更深层次的故障特征,精确地辨识故障区域。为验证该方法的有效性,在MATLAB平台上搭建IEEE 13节点的配电网模型,对其产生故障数据进行故障区段的定位仿真。研究结果表明:该方法能够快速、准确地进行故障区段定位,其精度在98%以上,且该方法对噪声具有良好的鲁棒性。 展开更多
关键词 残差神经网络 配电网 格拉姆角场 域变换 故障定位
在线阅读 下载PDF
基于XRF的CARS-GAF-MobileNet铝合金牌号分类研究
2
作者 吕树彬 万优 +1 位作者 李福生 杨婉琪 《分析测试学报》 北大核心 2025年第6期1161-1168,共8页
铝合金以其卓越的特性在工业上得到广泛应用,对铝合金的牌号进行准确分类能够进一步推动制造业等领域的发展。该文提出了一种新的铝合金X射线荧光(XRF)光谱分类框架CARS-GAF-MobileNet(CGM)。首先,采用XRF光谱仪获取铝合金样本的XRF光... 铝合金以其卓越的特性在工业上得到广泛应用,对铝合金的牌号进行准确分类能够进一步推动制造业等领域的发展。该文提出了一种新的铝合金X射线荧光(XRF)光谱分类框架CARS-GAF-MobileNet(CGM)。首先,采用XRF光谱仪获取铝合金样本的XRF光谱数据;然后,提出一种基于多元素校正的竞争性自适应重加权采样(CARS)算法对数据进行变量筛选;随后,使用格拉姆角场(GAF)将一维光谱转换为二维光谱图像,并通过色彩映射将灰度图转为RGB图;最后,将转换后的二维光谱图作为Mobilenet-V3模型的输入,对铝合金样本进行分类。实验结果表明,所提出的CGM框架的最终分类准确率可以达到94.3%,能够对不同牌号的铝合金样品进行精确识别。CGM是一种具有潜力的铝合金牌号识别框架,对铝合金分类问题具有较好的理论指导和应用价值。 展开更多
关键词 X射线荧光 铝合金分类 格拉姆角场 竞争性自适应重加权采样 深度学习
在线阅读 下载PDF
IMGAF-RLNet模型的股指趋势预测研究
3
作者 张菊平 李路 《计算机工程与应用》 北大核心 2025年第6期229-243,共15页
针对金融时间序列动态不稳定性以及长期依赖的特性,构建了基于深度学习算法的IMGAF-RLNet模型预测中国股票市场的大、中盘指数涨跌趋势。IMGAF-RLNet采用格拉姆角场方法将目标股指和基于斯皮尔曼秩相关系数筛选的成分股的不同特征序列... 针对金融时间序列动态不稳定性以及长期依赖的特性,构建了基于深度学习算法的IMGAF-RLNet模型预测中国股票市场的大、中盘指数涨跌趋势。IMGAF-RLNet采用格拉姆角场方法将目标股指和基于斯皮尔曼秩相关系数筛选的成分股的不同特征序列编码为格拉姆差角场矩阵,然后将得到的矩阵序列构造为多维张量输入根据预训练模型分类结果筛选的CNN分类器残差网络(ResNet)进行特征提取,同时添加长短时记忆网络(LSTM)学习股指数据的时序特征,最后通过全连接网络对ResNet提取的局部特征和LSTM提取的整体特征完成股指趋势分类预测。选取沪深300、上证50、中证500指数作为研究对象。实验表明,三只股指的短、中、长期趋势预测准确率均在59%以上,其中预测效果最好的窗口及分类准确率分别为40、20、20以及62.65%、63.68%、61.85%。 展开更多
关键词 股指趋势预测 数据增强 格拉姆角场 残差神经网络 长短时记忆网络
在线阅读 下载PDF
基于改进GAF-SE-ResNet的光伏逆变器开路故障诊断 被引量:3
4
作者 韩素敏 余悦伟 郭宇 《太阳能学报》 EI CAS CSCD 北大核心 2024年第10期336-344,共9页
针对光伏逆变器一维时序信号输入卷积神经网络时无法充分捕获时间和局部特征的问题,提出一种基于格拉姆角场(GAF)与改进的深度残差网络(ResNet)结合的光伏逆变器开路故障诊断模型。采用双通道GAF编码方法将一维电流信号映射为不同像素... 针对光伏逆变器一维时序信号输入卷积神经网络时无法充分捕获时间和局部特征的问题,提出一种基于格拉姆角场(GAF)与改进的深度残差网络(ResNet)结合的光伏逆变器开路故障诊断模型。采用双通道GAF编码方法将一维电流信号映射为不同像素分布的二维故障特征图像,将特征图像作为ResNet的输入,保留了数据在时间维度的相关性。ResNet在卷积神经网络中引入残差模块来解决过拟合的问题,加入压缩和激励(SE)注意力机制改进残差模块后进行图像压缩、特征重用,增强了重要特征信息,使ResNet能更深入挖掘图像信息,充分捕获局部特征,结合Swish函数和Ranger优化器优化ResNet,大幅降低模型训练难度。实验结果表明,该方法对光伏逆变器开路故障诊断准确率达99.41%,与其他模型相比,具有更好的特征提取效果和诊断速度。 展开更多
关键词 光伏逆变器 故障诊断 特征提取 格拉姆角场 残差网络
在线阅读 下载PDF
基于SO-PAA-GAF和AdaBoost集成学习的高压断路器故障诊断 被引量:21
5
作者 司江宽 吐松江·卡日 +2 位作者 范想 高文胜 朱炜 《电力系统保护与控制》 EI CSCD 北大核心 2024年第3期152-160,共9页
针对在小样本和复杂工况下高压断路器故障诊断识别精度不高的问题,提出一种基于振动信号处理和Ada Boost集成学习的高压断路器故障诊断方法。首先,搭建高压断路器实验平台并采集8种工况下的分闸振动信号。其次,对振动信号进行绝对值处理... 针对在小样本和复杂工况下高压断路器故障诊断识别精度不高的问题,提出一种基于振动信号处理和Ada Boost集成学习的高压断路器故障诊断方法。首先,搭建高压断路器实验平台并采集8种工况下的分闸振动信号。其次,对振动信号进行绝对值处理后,使用分段聚合近似(piecewise aggregate approximation,PAA)进行分段平均,将输出的新序列采用格拉姆角场(Gramian angular field,GAF)转换成图片,并使用Relief F方法对提取的高维图片特征进行重要度排序。最后,将保留的重要特征输入到Ada Boost集成学习模型进行故障诊断,并用蛇优化算法确定最优PAA分段步长和输入分类器特征数量,以进一步提高故障诊断精度。通过分析多种信号处理方式及分类模型可知,图片信号和Ada Boost集成学习模型能够有效处理振动信号并准确判断故障类型,为准确、可靠地诊断高压断路器故障提供了新途径。 展开更多
关键词 高压断路器 振动信号处理 分段聚合近似 格拉姆角场 故障诊断
在线阅读 下载PDF
结合GAF与CNN的操动机构弹簧储能状态智能辨识
6
作者 施贻铸 满天雪 +3 位作者 周余庆 任燕 沈志煌 孙维方 《重庆大学学报》 CAS CSCD 北大核心 2024年第9期30-38,共9页
操动机构弹簧储能状态的鲁棒辨识对断路器服役性能有重要影响,如何建立起采样信号与弹簧储能状态之间的映射关系是制约其广泛应用的关键。针对这一问题,结合格拉姆角场(Gramian angular field,GAF)与卷积神经网络(convolutional neural ... 操动机构弹簧储能状态的鲁棒辨识对断路器服役性能有重要影响,如何建立起采样信号与弹簧储能状态之间的映射关系是制约其广泛应用的关键。针对这一问题,结合格拉姆角场(Gramian angular field,GAF)与卷积神经网络(convolutional neural network,CNN),提出了一种弹簧储能状态智能辨识方法,并成功应用于断路器操动机构。采用格拉姆角场将采集到的时域信号进行二维化处理,并利用其进行操动机构动态特性演化过程的追踪。断路器操动机构状态辨识实验验证了所提出的智能诊断方法有效性(识别成功率接近100.00%),为断路器在役状态的鲁棒识别提供一种可能。 展开更多
关键词 断路器 卷积神经网络 弹簧储能状态 格拉姆角场
在线阅读 下载PDF
基于GAF和混合模型的运动想象分类研究
7
作者 吕仁杰 常文文 +3 位作者 闫光辉 聂文超 郑磊 郭斌 《电子科技大学学报》 EI CAS CSCD 北大核心 2024年第6期952-960,共9页
针对运动想象脑−机接口的分类识别问题,提出了一种结合格拉姆角场理论、卷积神经网络(Convolutional Neural Networks,CNN)和长短期记忆网络(Long Short-Term Memory,LSTM)的新模型。首先,分别使用格拉姆角场中的格拉姆角和场与格拉姆... 针对运动想象脑−机接口的分类识别问题,提出了一种结合格拉姆角场理论、卷积神经网络(Convolutional Neural Networks,CNN)和长短期记忆网络(Long Short-Term Memory,LSTM)的新模型。首先,分别使用格拉姆角场中的格拉姆角和场与格拉姆角差场算法将一维运动想象脑电信号表示为二维图像;然后,设计针对性的浅层CNN和LSTM相结合的模型来识别该图像特征,从而完成运动想象分类。在BCI Competition IV 2a公开数据集上就运动想象任务进行了四分类验证。实验结果表明,在单被试和多被试的情况下,GASF-CNN-LSTM模型和GADF-CNN-LSTM模型相比其他模型性能提升显著,准确率均达87.66%以上,最高准确率可达99.09%。且针对运动功能障碍患者数据也能表现出良好的性能。对运动想象脑电信号的时间依赖性和对应特征的图像生成表征方法进行了探讨,为运动想象脑电信号特征挖掘提供了新思路。 展开更多
关键词 脑−机接口 运动想象 格拉姆角和场 格拉姆角差场 卷积神经网络
在线阅读 下载PDF
基于GAF-CNN的n/γ甄别方法研究 被引量:2
8
作者 黄坤翔 张江梅 +1 位作者 王嘉麒 苏覃 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第2期461-470,共10页
中子探测是核能开发领域的重要技术,由于中子闪烁体探测器往往会对中子和γ射线同时响应,因此有效分辨中子和γ射线是实现高精度中子探测的先决条件。为进一步提升n/γ甄别性能,本文结合脉冲形状甄别(PSD)技术和格拉姆角场(GAF)图像转... 中子探测是核能开发领域的重要技术,由于中子闪烁体探测器往往会对中子和γ射线同时响应,因此有效分辨中子和γ射线是实现高精度中子探测的先决条件。为进一步提升n/γ甄别性能,本文结合脉冲形状甄别(PSD)技术和格拉姆角场(GAF)图像转换方法,将卷积神经网络(CNN)分类模型应用到n/γ甄别中。通过GAF将n/γ脉冲数据转化为二维图像,之后将其输入到CNN分类模型中达到样本辨别的目的。为验证GAF-CNN甄别的准确性,与传统CNN甄别法和电荷比较法进行了甄别效果对比。结果表明,GAF-CNN甄别法具有更低的辨别误差率和较短的处理时间,且n/γ甄别品质因子(FOM)有着数量级上的提升。同时其具备网络轻量化的特点,有助于实现CNN PSD算法的嵌入式部署,为研制高性能n/γ复合探测能谱仪提供了一种可行的PSD技术解决方案。 展开更多
关键词 n/γ甄别 脉冲形状甄别 格拉姆角场 卷积神经网络 电荷比较法
在线阅读 下载PDF
基于BNN-RA模型的风电机组轴承故障诊断研究
9
作者 余萍 宋紫琼 +1 位作者 曹洁 陈息良 《太阳能学报》 北大核心 2025年第3期643-651,共9页
针对风电机组轴承故障诊断中特征提取困难,模型迭代速度慢,精度低的问题,该文提出一种基于改进二值化神经网络(BNN)的风电机组轴承故障诊断方法。首先采用格拉姆角场(GAF)将轴承振动信号转换为二维图像,以提高特征提取精度,然后结合深... 针对风电机组轴承故障诊断中特征提取困难,模型迭代速度慢,精度低的问题,该文提出一种基于改进二值化神经网络(BNN)的风电机组轴承故障诊断方法。首先采用格拉姆角场(GAF)将轴承振动信号转换为二维图像,以提高特征提取精度,然后结合深度残差网络和注意力机制构建BNN-RA(BNN+Residual Network+Spatial attention network structure)故障诊断模型,实现轴承的高效故障诊断,最终通过美国凯斯西储大学(CWRU)与江南大学(JNU)公开的轴承数据集进行方法有效性验证。结果表明,该方法可有效提高网络迭代速度和诊断精度,模型在CWRU轴承数据集单一工况下迭代11次可达到收敛,故障诊断准确率达到99.20%,在两数据集的不同工况下平均准确率可达98.46%与97.6%。 展开更多
关键词 风电机组 故障诊断 轴承 二值化神经网络 格拉姆角场
在线阅读 下载PDF
基于格拉姆角场和PCNN-BiGRU模型的故障诊断方法及其应用 被引量:2
10
作者 盛世龙 王淑青 +2 位作者 王云鹤 翟宇胜 刘冬 《中国农村水利水电》 北大核心 2025年第2期121-128,共8页
研究提出了一种基于信号处理和深度学习技术的水电机组故障诊断方法。首先,利用VMD对水电机组的原始信号进行分解和重构,以实现信号的降噪,并得到本征模态函数(IMF);随后,通过格拉姆角场(GAF)变换,将IMF转换为GASF和GADF图像。然后将所... 研究提出了一种基于信号处理和深度学习技术的水电机组故障诊断方法。首先,利用VMD对水电机组的原始信号进行分解和重构,以实现信号的降噪,并得到本征模态函数(IMF);随后,通过格拉姆角场(GAF)变换,将IMF转换为GASF和GADF图像。然后将所有图像数据输入到双通道并行二维卷积神经网络与双向门控循环单元(PCNNBiGRU)模型中进行训练。该模型通过CNN提取特征图,并将其输入到BiGRU中,以保持对时间特征的敏感度并剔除冗余信息;最后,为验证该方法的有效性,结合实际电站机组样本数据进行比较试验,对所提方法提供高效、准确的水电机组故障诊断解决方案进行了验证。 展开更多
关键词 水电机组 VMD 格拉姆角场 故障诊断 并行CNN BiGRU
在线阅读 下载PDF
基于GAF-CapsNet的电机轴承故障诊断方法 被引量:19
11
作者 张辉 戈宝军 +1 位作者 韩斌 赵丽娜 《电工技术学报》 EI CSCD 北大核心 2023年第10期2675-2685,共11页
针对一维机械振动信号在输入卷积神经网络时无法充分提取相对位置关系的问题,提出一种基于格拉姆角场(GAF)和小尺寸卷积的胶囊网络的轴承故障诊断分类方法。利用GAF对采集到的振动信号进行编码,可以很容易地进行角度透视,从而识别出不... 针对一维机械振动信号在输入卷积神经网络时无法充分提取相对位置关系的问题,提出一种基于格拉姆角场(GAF)和小尺寸卷积的胶囊网络的轴承故障诊断分类方法。利用GAF对采集到的振动信号进行编码,可以很容易地进行角度透视,从而识别出不同时间间隔内的时间相关性并产生相应特征图。胶囊网络对小尺寸图像相对位置比较敏感,特征提取具有优势,同时考虑到VGG网络优秀的特征提取能力,在结合胶囊网络和VGG网络的基础上,加入深度小尺寸卷积层。将GAF编码的振动图像输入到改进的CapsNet网络进行训练,组成GAF-CapsNet模型对轴承故障进行诊断。该模型在凯斯西储大学轴承数据集上进行试验,结果表明,格拉姆角和场(GADF)编码方式相比格拉姆角差场(GASF)编码效果差,效果较好的GADF-CapsNet有99.27%准确率,较差的GASF-CapsNet也有98.83%准确率,相较其他编码方式和卷积神经网络,该模型性能表现普遍比其他模型具有更高准确率。 展开更多
关键词 轴承 故障诊断 格拉姆角场 胶囊网络
在线阅读 下载PDF
基于GAF-CNN的电力系统暂态稳定评估 被引量:13
12
作者 李欣 付豫韬 +4 位作者 李新宇 陈德秋 鲁玲 郭攀锋 柳圣池 《智慧电力》 北大核心 2023年第11期45-52,共8页
为保障电力系统安全稳定运行,针对电力系统暂态稳定评估(TSA)问题,提出了一种基于数据图像化的深度学习方法。首先,通过格拉姆角场(GAF)将原始的电力系统数据转为易于区分稳定与失稳的二维图像。其次,利用得到的二维图像数据集训练卷积... 为保障电力系统安全稳定运行,针对电力系统暂态稳定评估(TSA)问题,提出了一种基于数据图像化的深度学习方法。首先,通过格拉姆角场(GAF)将原始的电力系统数据转为易于区分稳定与失稳的二维图像。其次,利用得到的二维图像数据集训练卷积神经网络(CNN)模型并进行在线应用。最后,通过在CEPRI 36节点系统和含风机的IEEE39节点系统、IEEE300节点系统中对所提TSA方法进行验证,结果表明了所提方法的有效性。 展开更多
关键词 暂态稳定评估 深度学习 格拉姆角场 卷积神经网络
在线阅读 下载PDF
基于格拉姆角场的子域适应变工况轴承故障诊断
13
作者 刘志伟 雷斌 +2 位作者 魏鹏飞 及文磊 李德仓 《组合机床与自动化加工技术》 北大核心 2025年第6期182-187,共6页
滚动轴承工作环境复杂多变且样本数据不平衡,导致模型泛化能力差和诊断精度低。为提高模型泛化能力以及准确性,结合格拉姆角场(GAF)编码技术捕获信号的周期变化,从子域角度出发,考虑对齐子域损失,提出了一种基于格拉姆角场的深度子域适... 滚动轴承工作环境复杂多变且样本数据不平衡,导致模型泛化能力差和诊断精度低。为提高模型泛化能力以及准确性,结合格拉姆角场(GAF)编码技术捕获信号的周期变化,从子域角度出发,考虑对齐子域损失,提出了一种基于格拉姆角场的深度子域适应网络(GSAM)跨域故障诊断模型。首先,将振动信号通过格拉姆角场技术进行预处理,生成特征图;再次,使用神经网络提取特征,利用局部最大均值差异(LMMD)进行特征映射,捕获不同域的同一类别内的两个子域之间的关系;最后,采用凯斯西储大学(CWRU)数据集和东南大学齿轮箱测得的轴承故障数据进行实验,进行跨域故障诊断。结果表明所提出模型的跨域故障诊断精度高于其他域适应对比模型。 展开更多
关键词 轴承 故障诊断 迁移学习 格拉姆角场 领域自适应
在线阅读 下载PDF
基于位串行卷积神经网络加速器的运动想象脑电信号识别系统
14
作者 程筱舒 王忆文 +2 位作者 娄鸿飞 丁玮然 李平 《电子科技大学学报》 北大核心 2025年第3期321-332,共12页
准确识别运动想象脑电信号是神经科学和生物医学工程领域的重要挑战。设计了基于位串行卷积神经网络加速器的脑电信号识别系统,充分利用其小体积、低能耗和高实时性的优势。从软件层面,介绍了脑电数据的预处理、特征提取及分类过程,并... 准确识别运动想象脑电信号是神经科学和生物医学工程领域的重要挑战。设计了基于位串行卷积神经网络加速器的脑电信号识别系统,充分利用其小体积、低能耗和高实时性的优势。从软件层面,介绍了脑电数据的预处理、特征提取及分类过程,并采用格拉姆角场转换将一维信号映射为二维特征图供网络处理。在硬件层面,提出了列暂存数据流和固定乘数原位串行乘法器等方法,在FPGA上实现了位串行卷积神经网络加速器的原型验证。实验表明,基于位串行LeNet-5加速器的FPGA实现对BCI竞赛Ⅳ数据集2a和2b的分类平均准确率分别达到95.68%和97.32%,kappa值分别为0.942和0.946,展现出的优异性为运动想象脑电信号识别的高效实现提供了思路。 展开更多
关键词 脑机接口 运动想象 卷积神经网络 硬件加速器 格拉姆角场
在线阅读 下载PDF
基于增强深度卷积神经网络的滚动轴承多工况故障诊断方法 被引量:2
15
作者 郭盼盼 张文斌 +4 位作者 崔奔 郭兆伟 赵春林 尹治棚 刘标 《振动工程学报》 北大核心 2025年第1期96-108,共13页
针对现有卷积神经网络无法充分提取滚动轴承时域信号间的关联特征,模型训练所需样本多以及泛化性不足的问题,提出一种基于增强卷积神经网络模型的滚动轴承多工况故障诊断方法。根据滚动轴承转速和采样频率计算轴承单圈故障特征信号长度... 针对现有卷积神经网络无法充分提取滚动轴承时域信号间的关联特征,模型训练所需样本多以及泛化性不足的问题,提出一种基于增强卷积神经网络模型的滚动轴承多工况故障诊断方法。根据滚动轴承转速和采样频率计算轴承单圈故障特征信号长度,采用格拉姆角场编码技术对单圈时域信号完整信息进行编码,生成相应特征图像,使神经网络在视觉上对时域信号关联特征进行学习;利用ACNet网络模型中的非对称卷积对ConvNeXt模型的7×7深度卷积层进行重构:即采用2个3×3,1个1×3和1个3×1的非对称小卷积核以多分支结构组合的形式重构其7×7卷积层,增强ConvNeXt模型的特征提取效率;对ConvNeXt模型中的数据增强模块及学习率衰减策略进行改进,提高ConvNeX模型在小样本训练下的泛化性,以此搭建增强深度卷积神经网络IConvNeXt模型。使用凯斯西储大学不同故障直径轴承、东南大学滚动轴承复合故障和加拿大渥太华变转速滚动轴承故障数据集进行试验验证,结果表明:所提IConvNeXt模型对滚动轴承不同故障直径和复合故障识别准确率为100%,对变转速轴承故障识别率为99.63%。将所提方法与RP+ResNet、RP+IConvNeXt、MLCNN⁃LSTM、MTF+ICon⁃vNeXt等方法进行对比,结果表明,所提模型在更少样本训练下的故障诊断效果均优于其他方法,并具有较强的泛化性能。 展开更多
关键词 故障诊断 滚动轴承 多工况 格拉姆角场 增强卷积神经网络
在线阅读 下载PDF
基于GASF变换和深度学习的柑橘内部品质分析
16
作者 陈浩宇 苗玉彬 《中国农机化学报》 北大核心 2025年第4期133-138,162,共7页
针对现有柑橘内部品质无损检测模型存在的光谱信息丢失、检测精度不高等问题,提出一种基于格拉姆角和场(GASF)变换和深度学习的内部品质无损定性分析方法。通过GASF变换将采集柑橘的可见—近红外慢透射一维光谱数据转换为二维图像,将移... 针对现有柑橘内部品质无损检测模型存在的光谱信息丢失、检测精度不高等问题,提出一种基于格拉姆角和场(GASF)变换和深度学习的内部品质无损定性分析方法。通过GASF变换将采集柑橘的可见—近红外慢透射一维光谱数据转换为二维图像,将移动平均平滑(MA)、标准正态变换(SNV)等预处理方法作为数据增强方法实现数据扩充。设计二维卷积神经网络(2D—CNN)模型并加入卷积注意力机制模块(CBAM)以提高模型对GASF图像的特征提取能力。结果表明,与传统机器学习模型支持向量机(SVM)、随机森林(RF)相比,神经网络模型对光谱信息提取能力更强,预测准确率更高。SVM和RF预测准确率分别为84.85%和81.82%,2D—CNN预测准确率为87.88%,加入CBAM后预测准确率提高至93.94%。GASF变换可将神经网络在图像处理中的优势引入可见—近红外光谱分析中,为水果内部品质无损检测提供新思路和理论参考。 展开更多
关键词 柑橘 格拉姆角和场 深度学习 可见—近红外光谱 卷积注意力机制
在线阅读 下载PDF
基于2D-VMD和ConvLSTM的电力负荷图像化短期预测方法
17
作者 李承皓 杨永标 +2 位作者 宋嘉启 张翔颖 徐青山 《南方电网技术》 北大核心 2025年第2期1-9,共9页
电力负荷预测受到诸多不确定性事件的影响,因此准确地预测负荷一直是行业内研究的重点方向。针对传统方法在对短期电力负荷预测精度较低的问题,给出一种基于二维变分模态分解(two-dimensional variational mode decomposition,2D-VMD)... 电力负荷预测受到诸多不确定性事件的影响,因此准确地预测负荷一直是行业内研究的重点方向。针对传统方法在对短期电力负荷预测精度较低的问题,给出一种基于二维变分模态分解(two-dimensional variational mode decomposition,2D-VMD)和卷积长短时记忆神经网络(convolutional long short-term memory,ConvLSTM)的电力负荷图像化短期预测方法。首先采用格拉姆角场方法(Gramian angular fields,GAF)将预处理后的负荷数据转换为一组格拉姆角场图像,然后通过2D-VMD将这组图像各自分解成一系列不同中心频率的子模态并按中心频率分类,使用ConvLSTM神经网络对不同模态图像组进行预测,最终将预测结果重构并逆操作得到负荷预测值。预测结果表明此方法提高了短期负荷预测的精度,为电力负荷预测提供了新方法。 展开更多
关键词 电力系统 负荷预测 格拉姆角场 二维变分模态分解 ConvLSTM神经网络
在线阅读 下载PDF
基于GASF-BMKELM的滚动轴承故障诊断方法
18
作者 杨锡发 王林军 +3 位作者 邹腾枭 吴振雄 李响 陈保家 《三峡大学学报(自然科学版)》 北大核心 2025年第4期96-103,共8页
针对传统故障诊断方法难以充分提取故障信息以及神经网络依赖初始参数选择的问题,提出一种基于格拉姆角和场(Gramian angular summation field,GASF)与贝叶斯优化多核极限学习机(Bayesian optimization multi-kernel extreme learning m... 针对传统故障诊断方法难以充分提取故障信息以及神经网络依赖初始参数选择的问题,提出一种基于格拉姆角和场(Gramian angular summation field,GASF)与贝叶斯优化多核极限学习机(Bayesian optimization multi-kernel extreme learning machine,BMKELM)的故障诊断方法.首先,应用小波包节点对数能量与格拉姆角和场(GASF)将原始振动信号变换为小波包对数能量图特征;其次,使用多项式核函数与径向基核函数加权组合构建多核极限学习机(multi-kernel extreme learning machine,MKELM),同时,利用贝叶斯优化算法优化多核极限学习机的参数来提升诊断模型的故障识别能力;最后,以小波包对数能量图特征作为输入,再使用BMKELM模型完成故障特征识别与分类.通过两个数据集进行验证分析,实验结果表明,所提方法的准确率分别为99.39%和98.89%,具有较高的故障识别率和稳定性. 展开更多
关键词 滚动轴承 格拉姆角和场 小波包对数能量图 多核极限学习机 贝叶斯优化算法 故障诊断
在线阅读 下载PDF
基于GADF与SAM-LCNN机制的石化离心风机轴承故障诊断方法
19
作者 刘森 刘美 +2 位作者 韩惠子 崔坤 陈曦 《机电工程》 北大核心 2025年第1期72-81,共10页
针对石化离心风机轴承故障诊断方法精度不高、诊断速度慢和泛化性较差的问题,提出了一种基于格拉姆角差场(GADF)图像编码以及融合了空间注意力机制的轻量化卷积神经网络(SAM-LCNN)的石化离心风机轴承故障诊断方法。首先,使用格拉姆角差... 针对石化离心风机轴承故障诊断方法精度不高、诊断速度慢和泛化性较差的问题,提出了一种基于格拉姆角差场(GADF)图像编码以及融合了空间注意力机制的轻量化卷积神经网络(SAM-LCNN)的石化离心风机轴承故障诊断方法。首先,使用格拉姆角差场将轴承一维振动信号编码为二维图像;然后,构建了融合空间注意力机制的轻量化卷积神经网络;最后,将GADF转换所得二维图像作为融合空间注意力机制的轻量化卷积神经网络的输入,进行了特征提取与故障诊断,分别采用了广东石油化工学院的石化多级离心风机轴承故障数据集与凯斯西储大学轴承故障数据集,对该方法的有效性及优越性进行了验证。研究结果表明:两种数据集的测试集分类准确率分别为99.7%和98.5%;相较于卷积神经网络(CNN)、LeNet-5和MobileNetV2三种对比方法,该离心风机滚动轴承诊断方法具有诊断精度高、诊断速度快和泛化能力强等优点。该方法能够有效地对石化离心风机轴承故障振动信号进行分类,可为石化安全生产提供保障,同时也为其他机械设备故障诊断提供参考。 展开更多
关键词 离心风机 滚动轴承 图像编码 格拉姆角场 轻量化卷积神经网络 空间注意力机制
在线阅读 下载PDF
基于图像融合技术的阿尔茨海默病检测研究
20
作者 李志刚 牟明凯 +1 位作者 胡德安 项楠 《东北大学学报(自然科学版)》 北大核心 2025年第6期1-7,共7页
利用傅里叶变换红外衰减全反射光谱(FTIR-ATR)技术采集阿尔茨海默病(AD)患者血浆样本.根据血浆膜样本的FTIR-ATR光谱数据,利用格拉姆角场(GAF)和马尔可夫转移场(MTF)将光谱数据编码为二维图像,同时结合基于深度残差网络和注意力机制的... 利用傅里叶变换红外衰减全反射光谱(FTIR-ATR)技术采集阿尔茨海默病(AD)患者血浆样本.根据血浆膜样本的FTIR-ATR光谱数据,利用格拉姆角场(GAF)和马尔可夫转移场(MTF)将光谱数据编码为二维图像,同时结合基于深度残差网络和注意力机制的神经网络模型,实现对阿尔茨海默病的筛查分类研究.实验结果表明,使用GAF-MTF-CNN模型能够有效提升光谱特征提取的准确率.同时,使用二维数据结合深度学习的方法比传统的分类方法具有更高的分类精度.采用GAF与MTF技术编码光谱为图像,结合改进残差神经网络,有效提升了AD筛查模型的泛化能力与诊断精准度,优化了筛查性能. 展开更多
关键词 近红外光谱 阿尔茨海默病 格拉姆角场 马尔可夫转移场 卷积神经网络
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部