Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two line...Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two linearly independent subspaces with deterministic but unknown coordinates.Relying on the two-step criteria,two adaptive detectors based on Gradient tests are proposed,in homogeneous and partially homogeneous clutter plus subspace interference,respectively.Both of the proposed detectors exhibit theoretically constant false alarm rate property against unknown clutter covariance matrix as well as the power level.Numerical results show that,the proposed detectors have better performance than their existing counterparts,especially for mismatches in the signal steering vectors.展开更多
针对传统灰狼优化算法位置更新时勘探与开发失衡,收敛速度慢且陷入局部最优的问题,提出一种改进的灰狼算法(balanced grey wolf algorithm based on fitness back learning,BGWO),引入非线性控制参数,增强算法前期勘探能力,加速收敛;在...针对传统灰狼优化算法位置更新时勘探与开发失衡,收敛速度慢且陷入局部最优的问题,提出一种改进的灰狼算法(balanced grey wolf algorithm based on fitness back learning,BGWO),引入非线性控制参数,增强算法前期勘探能力,加速收敛;在种群迭代阶段采用重心反向学习的最优适应度权重更新策略,平衡算法的勘探与开发。16组基准函数测试结果表明,改进后算法能自适应跳出局部最优,在加快算法收敛速度的同时提高全局收敛能力与精度。将BGWO应用于PV型旋风分离器粒级效率GBDT(gradient boosting decision tree)的建模,提高了GBDT的精度,模型相关系数0.980,均方误差0.00079,BGWO-GBDT与GBDT、PSO-GBDT和GWO-GBDT相对比,建模精度和稳定性明显提高,验证了BGWO的有效性。展开更多
基金supported by the National Natural Science Foundation of China(61971432)Taishan Scholar Project of Shandong Province(tsqn201909156)the Outstanding Youth Innovation Team Program of University in Shandong Province(2019KJN031)。
文摘Adaptive detection of range-spread targets is considered in the presence of subspace interference plus Gaussian clutter with unknown covariance matrix.The target signal and interference are supposed to lie in two linearly independent subspaces with deterministic but unknown coordinates.Relying on the two-step criteria,two adaptive detectors based on Gradient tests are proposed,in homogeneous and partially homogeneous clutter plus subspace interference,respectively.Both of the proposed detectors exhibit theoretically constant false alarm rate property against unknown clutter covariance matrix as well as the power level.Numerical results show that,the proposed detectors have better performance than their existing counterparts,especially for mismatches in the signal steering vectors.
文摘针对传统灰狼优化算法位置更新时勘探与开发失衡,收敛速度慢且陷入局部最优的问题,提出一种改进的灰狼算法(balanced grey wolf algorithm based on fitness back learning,BGWO),引入非线性控制参数,增强算法前期勘探能力,加速收敛;在种群迭代阶段采用重心反向学习的最优适应度权重更新策略,平衡算法的勘探与开发。16组基准函数测试结果表明,改进后算法能自适应跳出局部最优,在加快算法收敛速度的同时提高全局收敛能力与精度。将BGWO应用于PV型旋风分离器粒级效率GBDT(gradient boosting decision tree)的建模,提高了GBDT的精度,模型相关系数0.980,均方误差0.00079,BGWO-GBDT与GBDT、PSO-GBDT和GWO-GBDT相对比,建模精度和稳定性明显提高,验证了BGWO的有效性。