期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
基于时频Grad-CAM的调制识别网络可解释分析 被引量:1
1
作者 梁先明 倪帆 +1 位作者 陈文洁 张家树 《西南交通大学学报》 EI CSCD 北大核心 2024年第5期1215-1224,共10页
针对时频深度学习调制识别方法存在可解释性差的问题,提出一种基于时频梯度加权类激活映射(GradCAM)的调制识别网络可解释框架.该框架通过时频Grad-CAM可视化深度模型中隐含层的关键特征,从视觉上解释网络隐含层提取的时频深度特征对于... 针对时频深度学习调制识别方法存在可解释性差的问题,提出一种基于时频梯度加权类激活映射(GradCAM)的调制识别网络可解释框架.该框架通过时频Grad-CAM可视化深度模型中隐含层的关键特征,从视觉上解释网络隐含层提取的时频深度特征对于正确与错误识别中的作用,揭示低信噪比环境下网络性能下降的内在机理,并通过量化和排序网络中每层不同卷积核的贡献值来判断网络的冗余程度.仿真实验结果验证了基于时频Grad-CAM的调制识别网络可解释性框架的有效性;可解释分析结果表明,在低信噪比环境下,网络特征提取区域有大量噪声存在,且本文所测试的调制识别网络冗余程度较为严重. 展开更多
关键词 可解释深度学习 梯度类加权激活映射 调制识别 时频分析
在线阅读 下载PDF
基于Grad-CAM可视化与特征识别率结合的草地贪夜蛾及近缘种成虫识别模型评估
2
作者 魏靖 季英超 《现代农业科技》 2024年第8期163-169,共7页
为提升草地贪夜蛾及其近缘种成虫识别模型的泛化能力,除识别准确率外,额外引入特征识别率对模型的泛化能力进行评估。将VGG-16-bn模型的全连接层以全局平均值池化层取代,并在模型训练阶段引入了Grad-CAM可视化结果进行训练指导,共构建了... 为提升草地贪夜蛾及其近缘种成虫识别模型的泛化能力,除识别准确率外,额外引入特征识别率对模型的泛化能力进行评估。将VGG-16-bn模型的全连接层以全局平均值池化层取代,并在模型训练阶段引入了Grad-CAM可视化结果进行训练指导,共构建了4种改进模型识别草地贪夜蛾及其近缘种成虫。结果表明,改进后的模型的识别准确率均在99.22%以上,VGG-16-bn-GAP模型参数内存需求仅为原始模型的10.98%。为评估模型的泛化能力,利用导向反向传播梯度值、Grad-CAM及Grad-CAM++对模型习得的特征进行可视化,并与专家进行人工识别的关键视觉特征进行比较。结果表明,改进的VGG-16-bn-GAP模型和VGG-16-bn-GAIN模型获得的草地贪夜蛾平均特征识别率比原始模型分别提高12.25%和13.42%。本文提出的以特征识别率评估模型泛化能力的方法,可为特征识别率和识别准确率的提升提供参考。 展开更多
关键词 草地贪夜蛾 grad-cam 全局平均值池化 泛化能力 特征识别率
在线阅读 下载PDF
融合Grad-CAM和卷积神经网络的COVID-19检测算法 被引量:19
3
作者 朱炳宇 刘朕 张景祥 《计算机科学与探索》 CSCD 北大核心 2022年第9期2108-2120,共13页
新型冠状病毒肺炎(COVID-19)检测中胸部X射线(CXR图像)和电子计算机断层扫描(CT)图像是两种主要技术手段,为医生诊断提供了重要依据。针对当前卷积神经网络(CNN)在医学放射性图像中检测COVID-19的准确率不高、算法复杂、无法标记特征区... 新型冠状病毒肺炎(COVID-19)检测中胸部X射线(CXR图像)和电子计算机断层扫描(CT)图像是两种主要技术手段,为医生诊断提供了重要依据。针对当前卷积神经网络(CNN)在医学放射性图像中检测COVID-19的准确率不高、算法复杂、无法标记特征区域的问题,提出了一种融合梯度加权类激活映射(GradCAM)颜色可视化和卷积神经网络的算法(GCCV-CNN),对COVID-19阳性患者、COVID-19阴性患者、普通肺炎患者以及正常人的肺部CXR图像和CT扫描图像进行快速分类。通过定位到CXR图像和CT扫描图像中CNN进行分类的关键区域,再综合深度学习算法得到更准确的检测结果。为验证GCCV-CNN算法的有效性,分别在3个COVID-19阳性患者数据集上进行实验,并与已有算法进行比较。结果表明该算法对COVID-19阳性患者的CXR图像和CT扫描图像分类性能优于“新冠网络”(COVID-Net)算法及迁移学习新冠网络(DeTraCNet)算法,准确率最高达98.06%,速度更快的同时还具有较好的鲁棒性。 展开更多
关键词 CXR图像 CT扫描图像 COVID-19 grad-cam 融合grad-cam颜色可视化和CNN的算法(GCCV-CNN)
在线阅读 下载PDF
基于Grad-CAM与KL损失的SSD目标检测算法 被引量:10
4
作者 侯庆山 邢进生 《电子学报》 EI CAS CSCD 北大核心 2020年第12期2409-2416,共8页
鉴于Single Shot Multibox Detector(SSD)算法对中小目标检测时会出现漏检甚至错检的情况,提出一种改进的SSD目标检测算法,以提高中小目标检测的准确性.运用Gradient-weighted Class Activation Mapping(Grad-CAM)技术对检测过程中的细... 鉴于Single Shot Multibox Detector(SSD)算法对中小目标检测时会出现漏检甚至错检的情况,提出一种改进的SSD目标检测算法,以提高中小目标检测的准确性.运用Gradient-weighted Class Activation Mapping(Grad-CAM)技术对检测过程中的细节作可视化处理,并以类激活图的形式呈现各检测层细节,分析各检测层的类激活图发现SSD算法中待检测目标的错检以及中小目标的漏检现象与回归损失函数相关.据此,采用Kullback-Leibler(KL)边框回归损失策略,利用Non Maximum Suppression(NMS)算法输出最终预测框.实验结果表明,改进算法相较于已有检测算法具有更高的准确率以及稳定性. 展开更多
关键词 目标检测 可视化 类激活图 grad-cam SSD KL损失
在线阅读 下载PDF
基于Grad-CAM的Mask-FGSM对抗样本攻击 被引量:4
5
作者 余莉萍 《计算机应用与软件》 北大核心 2022年第7期195-200,共6页
深度学习缺乏可解释性,其容易受到对抗性样本的攻击。对此引入一种深度学习可解释性模型Grad-CAM(Gradient-weighted Class Activation Mapping),通过神经网络输入和输出之间的映射关系得到输入的热力图,结合FGSM(Fast Gradient Sign Me... 深度学习缺乏可解释性,其容易受到对抗性样本的攻击。对此引入一种深度学习可解释性模型Grad-CAM(Gradient-weighted Class Activation Mapping),通过神经网络输入和输出之间的映射关系得到输入的热力图,结合FGSM(Fast Gradient Sign Method)引入一种高效的算法来生成对抗样本。实验证明,该算法能够挖掘潜在的最佳攻击位置,仅需要修改3.821%的输入特征,就能有效生成使得神经网络错误分类的对抗样本,充分验证了该算法的高效性。 展开更多
关键词 深度学习 grad-cam FGSM 可解释性 对抗样本
在线阅读 下载PDF
基于Grad-CAM的探地雷达公路地下目标检测算法 被引量:18
6
作者 赵迪 叶盛波 周斌 《电子测量技术》 2020年第10期113-118,共6页
提出了一种基于卷积神经网络(convolutional neural networks, CNN)与梯度类激活热力图(gradient class activation map, Grad-CAM)的探地雷达公路地下目标检测方法。首先使用标记好的探地雷达图像数据集训练一个用于图像分类的CNN,然... 提出了一种基于卷积神经网络(convolutional neural networks, CNN)与梯度类激活热力图(gradient class activation map, Grad-CAM)的探地雷达公路地下目标检测方法。首先使用标记好的探地雷达图像数据集训练一个用于图像分类的CNN,然后基于训练完成的CNN对图像计算Grad-CAM激活图,将获得的激活图进行二值化,定位目标位置。构建了一个包括了5 000张探地雷达图像的数据集,并使用该数据集进行实验,其中4 000张图像用来训练模型,1 000张用来测试。在1 000张测试数据中,各个类别的召回率分别为:管线目标99.2%,地下空洞98.5%,无目标图像98.8%。目标定位结果与实际位置非常吻合。这些结果表明该方法能够有效的检测探地雷达图像中的目标。 展开更多
关键词 探地雷达 深度学习 目标检测 梯度类激活热力图
在线阅读 下载PDF
基于CA-YOLOv8的输变电设备红外图像检测算法
7
作者 吴春燕 张传海 +3 位作者 孔德骏 竺德 卢一相 彭思远 《红外技术》 北大核心 2025年第9期1128-1134,共7页
在变电站的实际工作环境当中,输变电设备的红外图像会由于不同的拍摄场景和光照强度等问题影响最终的数据质量,对红外图像中输变电设备的定位及识别造成很大的影响。为了解决这个问题,提出一种基于CA-YOLOv8的目标检测算法,它通过在YOL... 在变电站的实际工作环境当中,输变电设备的红外图像会由于不同的拍摄场景和光照强度等问题影响最终的数据质量,对红外图像中输变电设备的定位及识别造成很大的影响。为了解决这个问题,提出一种基于CA-YOLOv8的目标检测算法,它通过在YOLOv8的网络结构中添加经过改进的CA模块以提高骨干网路的特征提取能力;同时,模型采用SIoU作为回归损失,既解决CIoU的梯度消失问题,又减小自由度的总数,提高模型的收敛速度。在实测数据集上采用Grad-CAM++对模型进行视觉可解释性展示和实验验证,本文算法比目前主流的YOLO系列算法具有更高的准确率,并通过损失训练过程和实际预测结果验证了本文算法能够快速准确地实现输变电设备的识别和定位。 展开更多
关键词 输变电设备 目标检测 YOLOv8 注意力机制 SIoU grad-cam++
在线阅读 下载PDF
井下煤炭运输多环节复杂背景下高精度煤矸识别方法
8
作者 栾亨宣 安乐 +7 位作者 田莹 顾颉颖 张强 陈宏伟 付翔 胡成军 崔志芳 陈锐 《煤炭科学技术》 北大核心 2025年第9期459-468,共10页
煤矸智能分选是发展煤炭智能绿色开采的关键技术之一。准确识别煤矸石是智能分选的先决条件,如何克服井下复杂环境的影响,已成为影响机器视觉识别效果的现实难题。针对井下煤炭运输系统,构建具有单一、二混合和三混合背景的11类图像数据... 煤矸智能分选是发展煤炭智能绿色开采的关键技术之一。准确识别煤矸石是智能分选的先决条件,如何克服井下复杂环境的影响,已成为影响机器视觉识别效果的现实难题。针对井下煤炭运输系统,构建具有单一、二混合和三混合背景的11类图像数据集,包含水渍、煤粉、碎煤与碎矸石及运输设备部件等背景干扰因素。提出了一种融合多种注意力与残差连接的高精度煤矸智能识别方法,高分辨率阶段使用残差卷积块快速生成高质量标记(token),后续阶段使用级联的Channel Spatial Swin Transformer Block(CSSTB)进行深层表征学习。为提升模型对背景噪声的抗干扰能力,网络集成全局、通道、空间多种注意力机制,增强特征表达的鲁棒性。CSSTB中利用基于负斜率特性强化稀疏激活的LeakyReLU线性注意力机制建模全局信息,通过卷积注意力机制模块(CBAM)优化模型注意力分布,提升模型泛化能力。此外,考虑到煤、矸石和输送设备零部件的尺度差异,跨阶段使用残差连接以增强多尺度特征的通信和信息流通。结果表明:所提模型在单一、二混合和三混合背景上的平均准确度达到95.06%、97.77%、95.65%,相较于基线网络Swin Transformer-Tiny分别提高7.01%、4.83%、1.03%。可视化试验表明,对比模型在水渍、暗光和反光等复杂背景干扰下难以准确区分煤和矸石,而所提出模型能够精准聚焦于煤和矸石的关键特征区域,抗干扰能力强。研究结果为井下原煤运输中的煤矸高效分选提供了理论参考。 展开更多
关键词 深度学习 煤矸识别 井下环境 注意力机制 梯度加权类激活热图
在线阅读 下载PDF
基于改进YOLOv7的复杂环境下苹果目标检测 被引量:2
9
作者 莫恒辉 魏霖静 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第12期2447-2458,共12页
采摘机器人在不稳定光照、果实多样性和树叶遮挡等复杂自然环境下识别苹果时,检测模型难以捕获关键特征,导致采摘效率和准确性较低.提出基于YOLOv7模型的针对复杂场景下苹果目标检测的改进算法.通过限制对比度自适应直方图均衡化算法增... 采摘机器人在不稳定光照、果实多样性和树叶遮挡等复杂自然环境下识别苹果时,检测模型难以捕获关键特征,导致采摘效率和准确性较低.提出基于YOLOv7模型的针对复杂场景下苹果目标检测的改进算法.通过限制对比度自适应直方图均衡化算法增强苹果图像对比度,以减少背景干扰,增强目标轮廓清晰度;提出多尺度混合自适应注意力机制,通过特征解构与重构,协同整合空间和通道维度的注意力导向,优化多层次特征的长短距离建模,增强模型对苹果特征的提取能力与抗背景干扰能力;引入全维度动态卷积,通过精细化的注意力机制优化特征选择过程;增加检测头个数,解决小目标检测问题;采用Meta-ACON激活函数,优化特征提取过程中的关注度分配.结果表明,改进后的YOLOv7模型对苹果的平均检测准确率和召回率分别为85.7%、87.0%,相比于Faster R-CNN、SSD、YOLOv5、YOLOv7,平均检测精度分别提高了15.2、7.5、4.5、2.5个百分比,平均召回率分别提高了13.7、6.5、3.6、1.3个百分比.模型效果表现优异,为苹果生长监测及机械摘果研究提供了坚实的技术支撑. 展开更多
关键词 苹果目标检测 YOLOv7 注意力机制 小目标检测 激活函数 grad-cam
在线阅读 下载PDF
基于深度学习的DRFM信号识别 被引量:1
10
作者 房津辉 宋宝军 朱明哲 《现代雷达》 CSCD 北大核心 2024年第3期54-58,共5页
针对数字射频存储器(DRFM)产生信号与源信号之间无法有效区分的问题,运用基于小波变换的同步压缩变换将时域的雷达信号转换为时频图,运用深度学习强大的图像识别能力,实现了基于深度学习的源信号与DRFM信号识别,从而解决了在雷达信号处... 针对数字射频存储器(DRFM)产生信号与源信号之间无法有效区分的问题,运用基于小波变换的同步压缩变换将时域的雷达信号转换为时频图,运用深度学习强大的图像识别能力,实现了基于深度学习的源信号与DRFM信号识别,从而解决了在雷达信号处理中无法有效区分回波信号和DRFM欺骗信号以及在雷达干扰识别中基于DRFM的欺骗干扰难以识别的问题。为了验证深度学习过程的可靠性,通过神经网络可解释性算法对训练结果进行了验证和分析。实验结果表明,相比于识别原始信号,识别DRFM信号神经网络需要用到更多的特征,神经网络判断准确率达到了96.33%,识别精度良好。 展开更多
关键词 干扰识别 时频变换 梯度加权类激活映射 导向反向传播 深度学习
在线阅读 下载PDF
基于高光谱成像技术的陈皮年份快速鉴别
11
作者 刘诚 赵路路 +2 位作者 周松斌 刘忆森 王庭有 《食品工业科技》 CAS 北大核心 2024年第24期243-251,共9页
陈皮具有较好的经济价值与药用价值,但目前市场上假冒伪劣、以次充好的现象严重。尤其是陈皮陈化年份作为衡量陈皮品质的重要指标,采用人工检测方法准确率与效率较低。为此,本文采用高光谱成像技术结合深度学习方法,建立陈皮陈化年份的... 陈皮具有较好的经济价值与药用价值,但目前市场上假冒伪劣、以次充好的现象严重。尤其是陈皮陈化年份作为衡量陈皮品质的重要指标,采用人工检测方法准确率与效率较低。为此,本文采用高光谱成像技术结合深度学习方法,建立陈皮陈化年份的快速无损鉴别方法。采集4类不同陈化年份的480个陈皮样本的近红外高光谱数据(波长范围为935.61~1720.23 nm),并采用轻量化卷积网络1D-Rep网络建立分类模型。在此网络基础上,提出基于多层梯度加权类激活映射(M-Grad-CAM)的特征波段选择方法,并建立特征波段分类模型。该方法综合加权多个Rep-block层的梯度生成波段重要性曲线,从而实现融合波段领域相关性与远程相关性的波段重要性指示。为验证方法有效性,采用基于偏最小二乘判别分析(PLS-DA)、随机森林(RF)、支持向量机(SVM)等机器学习方法获得的特征波段作为对比方法。结果表明,1D-Rep全波段光谱模型准确率达到98.55%。在特征波段建模的情况下,采用M-Grad-CAM选取特征波长,基于前9个特征波段建立分类模型准确率可超过90%,在20个特征波段时达到96.82%,准确率显著优于其他对比模型。本研究采用高光谱成像技术,可有效对不同年份的陈皮进行无损鉴别,并为开发便携检测仪器提供方法和理论依据。 展开更多
关键词 高光谱成像 陈皮 陈化年份 多层梯度加权类激活映射 特征波段
在线阅读 下载PDF
数字预失真下的辐射源个体识别技术 被引量:1
12
作者 赵雅琴 谢丹 +3 位作者 吴龙文 丁沁宇 韩易伸 张拯华 《电子学报》 EI CAS CSCD 北大核心 2023年第11期3331-3342,共12页
随着通信雷达技术的发展,针对辐射源发射机的非线性作用出现了预失真等新型技术,该类技术弱化了不同辐射源的个体特征进而恶化了辐射源个体识别性能.针对预失真下个体辐射源识别率降低的问题,本文提出了基于SincNet滤波器结构的辐射源... 随着通信雷达技术的发展,针对辐射源发射机的非线性作用出现了预失真等新型技术,该类技术弱化了不同辐射源的个体特征进而恶化了辐射源个体识别性能.针对预失真下个体辐射源识别率降低的问题,本文提出了基于SincNet滤波器结构的辐射源个体识别模型.本文采用Grad-CAM方法分析残差网络类激活区域,并提取共生矩阵特征用于辐射源识别,验证了预失真后信号局部特征的有效性.随后本文提出了基于SincNet滤波器结构的辐射源个体识别算法,在降低了计算量的同时,在低信噪比下具有更高的识别精度.本文通过实验验证了数字预失真对辐射源个体识别的消极作用,并且在实测数据上的结果表明所提方法的个体识别率在信噪比0 dB下达到94%,相比本文其他先进个体识别算法有明显的提升. 展开更多
关键词 辐射源个体识别 数字预失真 grad-cam SincNet
在线阅读 下载PDF
基于弱监督学习卷积神经网络的心脏按压评估 被引量:1
13
作者 鲍宇 殷佳豪 +2 位作者 刘世杰 杨轩 朱紫维 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第5期203-212,共10页
传统的基于加速度波形积分的心脏胸外按压评估方法受噪声和积分时延影响,在计算距离时存在较大误差,评估效果不理想。为此,在弱监督学习策略与波形分割的基础上,提出了一种基于一维卷积神经网络的心脏按压加速度波形识别算法,实验结果表... 传统的基于加速度波形积分的心脏胸外按压评估方法受噪声和积分时延影响,在计算距离时存在较大误差,评估效果不理想。为此,在弱监督学习策略与波形分割的基础上,提出了一种基于一维卷积神经网络的心脏按压加速度波形识别算法,实验结果表明,一维卷积神经网络达到了99.4%的正确率,明显优于传统的积分方法和BP神经网络算法。进一步采用Grad-CAM方法对评估结果进行可视化分析,发现卷积神经网络所关注的特征集中于开始按压至按压到达平衡位置,以及此次按压松手后反向加速度达到最大值至下一次按压开始这2个阶段的加速度波形变化情况。此外该评估模型不再需要对按压距离进行精确测距,因而不受按压遮挡、电磁波干扰等因素的影响,可以实时检测按压是否规范有效,在复杂环境中也具有较高的鲁棒性,在医疗急救领域中具有一定的实用价值。 展开更多
关键词 加速度波形评估 一维卷积神经网络 脉冲识别与波形分割 弱监督学习策略 一维grad-cam可视化
在线阅读 下载PDF
融合双线性网络和注意力机制的油橄榄品种识别 被引量:8
14
作者 朱学岩 陈锋军 +2 位作者 郑一力 李志强 张新伟 《农业工程学报》 EI CAS CSCD 北大核心 2023年第10期183-192,共10页
为解决自然条件下的油橄榄品种识别问题,该研究以油橄榄品种佛奥、莱星、皮削利和鄂植8号为研究对象,融合双线性网络与注意力机制,提出双线性注意力EfficientNet模型。针对不同品种油橄榄表型差异很小的特点,搭建双线性网络以充分提取... 为解决自然条件下的油橄榄品种识别问题,该研究以油橄榄品种佛奥、莱星、皮削利和鄂植8号为研究对象,融合双线性网络与注意力机制,提出双线性注意力EfficientNet模型。针对不同品种油橄榄表型差异很小的特点,搭建双线性网络以充分提取油橄榄图像中的特征信息。在此基础上,选用兼顾了速度和精度的EfficientNet-B0网络为特征提取网络。针对自然条件下油橄榄品种识别易受复杂背景干扰的问题,将CBAM(convolutional block attention module,CBAM)注意力与双线性网络结合,使模型在提取油橄榄图像特征时,能够聚焦到对油橄榄品种识别起关键作用的特征上。经测试,所提模型对4个油橄榄品种识别的总体准确率达到90.28%,推理时间为9.15 ms。Grad-CAM(gradient-weighted class activation mapping,Grad-CAM)热力图可视化结果也表明,所提模型在识别油橄榄品种时重点关注了果实以及部分叶子区域。消融试验结果表明,在EfficientNet模型中引入CBAM注意力和搭建双线性网络后,总体准确率分别提高了5.00和10.97个百分点。并且,对比试验结果表明,与双线性ResNet34、EfficientNet-SE注意力、双线性ResNet18、双线性VGG16和双线性GoogLeNet等模型相比,所提模型的总体识别准确率分别高12.78、11.53、11.11、10.70和5.00个百分点。该研究为解决自然条件下的油橄榄品种识别提供了依据,同时也可为其他作物的品种识别提供参考。 展开更多
关键词 图像处理 模型 品种识别 油橄榄 EfficientNet-B0 CBAM注意力 grad-cam
在线阅读 下载PDF
基于声成像与卷积神经网络的轴承故障诊断方法及其可解释性研究 被引量:16
15
作者 王冉 石如玉 +2 位作者 胡升涵 鲁文波 胡雄 《振动与冲击》 EI CSCD 北大核心 2022年第16期224-231,共8页
常用的振动诊断技术一般采用接触式测量,在测量受限的场合具有一定的局限性。该研究提出一种具有非接触测量优势的基于声成像与卷积神经网络的滚动轴承声学故障诊断方法。首先,利用传声器阵列获取滚动轴承辐射的空间声场;然后,用波叠加... 常用的振动诊断技术一般采用接触式测量,在测量受限的场合具有一定的局限性。该研究提出一种具有非接触测量优势的基于声成像与卷积神经网络的滚动轴承声学故障诊断方法。首先,利用传声器阵列获取滚动轴承辐射的空间声场;然后,用波叠加法进行声成像,重建后的声像能够描述声场的空间分布信息;最后,建立卷积神经网络(convolutional neural network,CNN),使用不同轴承运行状态下的声像样本对CNN模型进行训练用于故障诊断。同时,针对深度学习模型的诊断结果缺乏可解释性的问题,采用梯度加权类激活图(gradient-weighted class activation map,Grad-CAM)算法对卷积神经网络在基于声像的轴承故障诊断中的可解释性进行了研究。轴承试验台的声阵列数据验证了所提方法的有效性及优越性。 展开更多
关键词 声成像 故障诊断 卷积神经网络(CNN) 波叠加法 梯度加权类激活图(grad-cam)
在线阅读 下载PDF
基于深度学习的弱监督肝脏分割算法 被引量:1
16
作者 王泽辉 张冰 +3 位作者 李垣江 黄炜嘉 张正言 杨魏 《计算机应用与软件》 北大核心 2022年第12期252-259,共8页
目前,基于深度学习的图像分割方法往往需要大量的标注数据集,尤其在需要精确像素级标注的医学图像上,不仅需要高昂的时间成本,还需要大量的专业领域知识。为此,提出一种基于深度学习的弱监督肝脏分割算法。通过卷积神经网络训练具有边... 目前,基于深度学习的图像分割方法往往需要大量的标注数据集,尤其在需要精确像素级标注的医学图像上,不仅需要高昂的时间成本,还需要大量的专业领域知识。为此,提出一种基于深度学习的弱监督肝脏分割算法。通过卷积神经网络训练具有边框标注信息的肝脏数据;使用Grad-CAM算法获取肝脏粗略位置,通过改进的区域生长算法结合条件随机场完成对目标区域的数据扩张;将图片经过滤波等算法进一步完善分割区域。在3DIRCADb和自建数据集上的实验结果验证了该算法的有效性。 展开更多
关键词 弱监督 肝脏分割 grad-cam 区域生长 条件随机场
在线阅读 下载PDF
基于迁移学习的滚动轴承复合故障诊断研究 被引量:3
17
作者 杜康宁 宁少慧 《机床与液压》 北大核心 2023年第13期198-205,共8页
针对现有故障诊断方法多是面向单一故障进行研究,对于实际工况下的复合故障缺乏相应的诊断方法,提出一种基于有监督学习的ConvNeXt滚动轴承多工况复合故障诊断模型(TConvNeXt)。通过合成少数类过采样技术将滚动轴承数据集重构为平衡数据... 针对现有故障诊断方法多是面向单一故障进行研究,对于实际工况下的复合故障缺乏相应的诊断方法,提出一种基于有监督学习的ConvNeXt滚动轴承多工况复合故障诊断模型(TConvNeXt)。通过合成少数类过采样技术将滚动轴承数据集重构为平衡数据集,以提高复合故障样本的利用率;利用迁移学习使TConvNeXt网络模型掌握判别滚动轴承复合故障信息所需的部分权重,通过格拉姆角场将一维信号转换为RGB图像输入模型,训练模型剩余权重;最后将训练后的TConvNeXt网络模型用于滚动轴承故障诊断并且利用Grad-CAM方法进行可视化,分析网络诊断错误起因并对网络进行调整;将训练准确率最高的模型用于滚动轴承故障实测,检验其实际工况下的诊断能力。实验结果表明:TConvNeXt网络模型具有高诊断精度,它不仅在混叠故障诊断中表现突出,在单一故障诊断中也具有优势,能够很好地适应多工况下不同故障类型的滚动轴承故障诊断要求。 展开更多
关键词 复合故障诊断 迁移学习 ConvNeXt卷积神经网络 grad-cam方法
在线阅读 下载PDF
IrisCodeNet:虹膜特征编码网络 被引量:5
18
作者 贾丁丁 沈文忠 《计算机工程与应用》 CSCD 北大核心 2022年第10期185-192,共8页
使用有效的特征提取算法对虹膜纹理进行准确的表达是虹膜识别技术的关键。基于虹膜识别任务的特殊性,提出了用于虹膜特征编码的网络模型IrisCodeNet。该网络架构使用了改进的BasicBlock,并结合了可以扩大决策边界的损失函数AM-Softmax(a... 使用有效的特征提取算法对虹膜纹理进行准确的表达是虹膜识别技术的关键。基于虹膜识别任务的特殊性,提出了用于虹膜特征编码的网络模型IrisCodeNet。该网络架构使用了改进的BasicBlock,并结合了可以扩大决策边界的损失函数AM-Softmax(additive margin softmax)。为了获取最佳的虹膜识别效果,对AM-Softmax的参数设置、虹膜图像预处理输入形式、数据增强方式、网络输入尺寸做了细致的研究。实验结果表明:使用IrisCodeNet训练得到的特征提取器在CASIA-Iris-Thousand、CASIA-Iris-Distance、IITD虹膜数据库上进行测试,所评估的等错误率(equal error rate,EER)和正确接受率(true acceptance rate,TAR)均远远超过了广泛应用的传统算法。特别地,IrisCodeNet无需传统的虹膜归一化或精确的虹膜分割步骤依然取得了极好的识别效果。并且使用Grad-CAM(gradient-weighted class activation mapping)算法进行了可视化分析,结果表明该网络框架有效地关注了虹膜纹理信息,从而证明了IrisCodeNet具有较强的虹膜纹理特征提取能力。 展开更多
关键词 虹膜识别 特征编码 图像预处理 AM-Softmax grad-cam
在线阅读 下载PDF
深度学习方法在地震事件分类中的应用及可解释性研究 被引量:4
19
作者 路晓辰 杨立明 +4 位作者 杨兴悦 王祖东 王维欢 高永国 尹欣欣 《地震工程学报》 CSCD 北大核心 2023年第2期474-482,共9页
采用2016—2020年福建台网所记录的爆破和天然地震事件以及背景噪声数据集,使用CNN模型、Inception10模型、ResNet18模型和Vgg16模型4种深度学习网络模型进行分类研究。针对深度学习网络模型的“黑盒”问题,将梯度类激活映射(Gradient-w... 采用2016—2020年福建台网所记录的爆破和天然地震事件以及背景噪声数据集,使用CNN模型、Inception10模型、ResNet18模型和Vgg16模型4种深度学习网络模型进行分类研究。针对深度学习网络模型的“黑盒”问题,将梯度类激活映射(Gradient-weighted Class Activation Mapping,Grad-CAM)算法引入这4种分类模型中,得到每个模型的可视化图。通过可视化图可以直观地看出模型在做出分类决策时对于不同波形特征的依赖权重,为模型的可解释性提供依据,进而提高模型的可信度。通过对模型的可视化图分析得出,分类效果更好的CNN模型和Vgg16模型在做出决策时更依赖于地震波形的震相特征,对于震前和震后的波段关注较小;而ResNet18模型和Inception10模型对于震相特征的关注不够敏锐。通过Grad-CAM算法对模型进行可视化分析得到的结果能够很好地反映模型的分类效果,对于改进和选择合适的分类模型具有重要意义。 展开更多
关键词 可解释性 grad-cam算法 爆破事件分类 深度学习
在线阅读 下载PDF
基于残差网络与迁移学习的柑橘类型识别模型研究 被引量:3
20
作者 牛群峰 刘江鹏 +1 位作者 王莉 王建鹏 《现代农业科技》 2023年第8期73-76,79,共5页
传统的柑橘分类依靠人工辨识再手动完成分拣,整个过程耗时长且成本高昂。对此,本文提出了一种基于残差网络与迁移学习的柑橘类型识别模型。对20738张共8类柑橘的图像按7∶3的比例划分训练集和测试集得到数据集,在此数据集上对不同模型... 传统的柑橘分类依靠人工辨识再手动完成分拣,整个过程耗时长且成本高昂。对此,本文提出了一种基于残差网络与迁移学习的柑橘类型识别模型。对20738张共8类柑橘的图像按7∶3的比例划分训练集和测试集得到数据集,在此数据集上对不同模型的柑橘分类性能以及迁移学习对经典卷积模型在图像分类任务中的性能提升效果进行了探究,试验以损失值、精准率、召回率等作为性能评价指标。结果表明:在多种模型中,ResNet34准确率更高;使用迁移学习能显著提高柑橘分类的准确度,实现对8类柑橘的准确识别分类,最终分类准确率达到99.97%。该识别模型对柑橘分类具有指导意义。 展开更多
关键词 柑橘分类 迁移学习 残差网络 类激活热力图
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部