期刊文献+
共找到321篇文章
< 1 2 17 >
每页显示 20 50 100
基于多尺度深度可分离ResNet的废弃家电回收图像分类模型
1
作者 雷帅 仇明鑫 +1 位作者 柳先辉 张颖瑶 《计算机科学》 北大核心 2025年第S1期377-383,共7页
针对海量废弃家电回收图像数据在回收技术中难以有效利用的问题,提出了一种基于ResNet和多尺度卷积的废弃家电回收图像分类模型(Multi-scale and Efficient ResNet,ME-ResNet)。首先,基于残差结构设计了多尺度卷积模块以提升不同尺度特... 针对海量废弃家电回收图像数据在回收技术中难以有效利用的问题,提出了一种基于ResNet和多尺度卷积的废弃家电回收图像分类模型(Multi-scale and Efficient ResNet,ME-ResNet)。首先,基于残差结构设计了多尺度卷积模块以提升不同尺度特征信息提取能力,在此基础上基于ResNet设计了针对废弃家电回收图像分类问题的ME-ResNet模型;其次,通过用深度可分离卷积替换多尺度卷积中的部分卷积层,实现ME-ResNet模型轻量化;最后,通过与其他卷积神经网络的对比实验,对ME-ResNet及其轻量化模型的性能进行了验证。研究结果表明:相较于经典的卷积神经网络ResNet34,ME-ResNet及其轻量化模型均能有效提升识别准确度,针对构建的数据集,其最优准确率分别提升了1.2%和0.3%,宏精确率分别提升了1.7%和0.9%,宏召回率分别提升了1.3%和0.2%,宏F1分数分别提升了1.5%和0.5%。 展开更多
关键词 多尺度卷积 ME-ResNet模型 深度可分离卷积 图像分类 残差连接
在线阅读 下载PDF
基于时空倍频程卷积模块的轻量级视频显著性预测模型
2
作者 戴怡萱 韩冰 +1 位作者 高新波 韩怡园 《计算机工程与应用》 北大核心 2025年第14期248-255,共8页
视频显著性预测是模拟人眼关注点的重要任务,对于视频编辑、虚拟现实和自动驾驶等应用至关重要。传统方法依赖于大型网络,限制了在资源受限设备上的应用。为解决上述问题,提出一种轻量级网络,通过设计轻量化的时空多尺度倍频程卷积模块... 视频显著性预测是模拟人眼关注点的重要任务,对于视频编辑、虚拟现实和自动驾驶等应用至关重要。传统方法依赖于大型网络,限制了在资源受限设备上的应用。为解决上述问题,提出一种轻量级网络,通过设计轻量化的时空多尺度倍频程卷积模块,减少参数和计算需求,保持性能的同时提高了效率。结果表明,轻量级网络在资源受限设备上取得了与传统方法相媲美甚至更好的性能,具有较低的计算开销和较快的推理速度,预测结果更符合真实的人类眼动行为。 展开更多
关键词 视频显著性预测 深度学习 轻量级模型 3D卷积
在线阅读 下载PDF
融合深度强化学习的卷积神经网络联合压缩方法
3
作者 马祖鑫 崔允贺 +4 位作者 秦永彬 申国伟 郭春 陈意 钱清 《计算机工程与应用》 北大核心 2025年第6期210-219,共10页
随着边缘计算、边缘智能等概念的兴起,卷积神经网络的轻量化部署逐渐成为研究热点。传统的卷积神经网络压缩技术通常分阶段地、独立地执行剪枝与量化策略,但这种方式没有考虑剪枝与量化过程的相互影响,使其无法达到最优的剪枝与量化结果... 随着边缘计算、边缘智能等概念的兴起,卷积神经网络的轻量化部署逐渐成为研究热点。传统的卷积神经网络压缩技术通常分阶段地、独立地执行剪枝与量化策略,但这种方式没有考虑剪枝与量化过程的相互影响,使其无法达到最优的剪枝与量化结果,影响压缩后的模型性能。针对以上问题,提出一种基于深度强化学习的神经网络联合压缩方法——CoTrim。CoTrim同时执行通道剪枝与权值量化,利用深度强化学习算法搜索出全局最优的剪枝与量化策略,以平衡剪枝与量化对网络性能的影响。在CIFAR-10数据集上对VGG和ResNet进行实验,实验表明,对于常见的单分支卷积和残差卷积结构,CoTrim能够在精度损失仅为2.49个百分点的情况下,将VGG16的模型大小压缩至原来的1.41%。在复杂数据集Imagenet-1K上对紧凑网络MobileNet和密集连接网络DenseNet进行实验,实验表明,对于深度可分离卷积结构以及密集连接结构,CoTrim依旧能保证精度损失在可接受范围内将模型压缩为原始大小的1/5~1/8。 展开更多
关键词 卷积神经网络 深度强化学习 模型压缩 通道剪枝 权值量化 边缘智能
在线阅读 下载PDF
融合并行多卷积注意力的扩散模型去雾方法
4
作者 崔欣桐 王瑛 +3 位作者 邓真楠 王浚瞩 梁铮 邓红霞 《计算机工程与设计》 北大核心 2025年第7期2081-2088,共8页
针对目前去雾方法细节模糊、对真实环境去雾不彻底等问题,提出一种融合并行多卷积注意力的条件扩散模型。将有雾图像作为条件先验引入扩散模型,提升扩散模型对尘雾的理解能力;设计构建并行多卷积注意力残差块,通过不同尺度卷积和不同注... 针对目前去雾方法细节模糊、对真实环境去雾不彻底等问题,提出一种融合并行多卷积注意力的条件扩散模型。将有雾图像作为条件先验引入扩散模型,提升扩散模型对尘雾的理解能力;设计构建并行多卷积注意力残差块,通过不同尺度卷积和不同注意力机制加强模型对尘雾区域的关注,提升模型对有雾图像的特征提取能力;使用SKFusion进行带权特征融合,更大限度保留重要的浅层特征;使用双3次下采样和拉普拉斯金字塔处理图像,降低模型参数和计算复杂度。通过将该方法与其它方法在不同数据集进行多种对比实验和消融实验,验证了该方法在图像去雾上的有效性。 展开更多
关键词 图像去雾 深度学习 扩散模型 并行多卷积注意力 深度可分离卷积 残差连接 多尺度特征融合
在线阅读 下载PDF
基于深度学习的大坝边坡深部变形时空预测模型研究
5
作者 周小燕 李双平 +5 位作者 冉鲁光 苏振 张斌 刘祖强 苏森南 史波 《中国农村水利水电》 北大核心 2025年第7期182-187,195,共7页
大坝边坡大变形或滑坡严重威胁库区长久运行安全。主流传统边坡变形预测模型未能充分考虑变形的时间和空间特征。引入Transformer、时空图卷积神经网络(STGCN)、时序卷积网络(TCN)和图卷积神经网络(GCN)四种代表性深度学习方法,提出基... 大坝边坡大变形或滑坡严重威胁库区长久运行安全。主流传统边坡变形预测模型未能充分考虑变形的时间和空间特征。引入Transformer、时空图卷积神经网络(STGCN)、时序卷积网络(TCN)和图卷积神经网络(GCN)四种代表性深度学习方法,提出基于深度学习模型的边坡测斜孔变形时空预测方法。利用某水电边坡测斜孔变形监测数据,对监测数据展开系统性分析。预测结果表明,GCN、TCN、STGCN和Transformer四种模型均适用于边坡时空预测,其中TCN模型相较于其他3种时空预测模型展现出了更高的预测精度和可靠性,评估指标MAE、MSE、RMSE、MAPE和R2分别为1.007、2.2082、1.486、102.40%和0.9884。此外,4个模型的不同日期的预测结果与实测值的误差分布在0~4 mm之间,验证了4个模型在边坡测斜孔变形时空预测的准确性和有效性。研究结果为库区边坡变形时空短期预测提供了新思路。 展开更多
关键词 深度学习 大坝边坡变形 时空预测模型 时序卷积网络模型
在线阅读 下载PDF
深度卷积网络下船舶航行遥感影像信息提取方法
6
作者 白磊 张君君 冯乃勤 《舰船科学技术》 北大核心 2025年第8期171-175,共5页
船舶航行遥感影像信息提取中,由于影像摄取面积大且背景复杂,在图像分割阶段,仅依赖于光谱信息而忽略了空间关系,会导致分割结果边缘不连续。为此,提出深度卷积网络下船舶航行遥感影像信息提取方法。通过图像配准对船舶航行遥感影像展... 船舶航行遥感影像信息提取中,由于影像摄取面积大且背景复杂,在图像分割阶段,仅依赖于光谱信息而忽略了空间关系,会导致分割结果边缘不连续。为此,提出深度卷积网络下船舶航行遥感影像信息提取方法。通过图像配准对船舶航行遥感影像展开预处理,考虑空间关系采用WGMM-MRF模型对船舶航行影像进行分割处理,确保分割结果边缘具备连续性。构建深度卷积神经网络,基于深度特征提取和变化区域判别策略,将WGMM-MRF分割后的船舶航行图像作为输入,实现船舶航行遥感影像信息提取。实验结果表明,所提方法的提取精度最高达到了0.93,损失程度最高仅为0.04,具备较高的实际应用价值。 展开更多
关键词 深度卷积神经网络 船舶航行 遥感影像 WGMM-MRF模型
在线阅读 下载PDF
卷积Mamba模型驱动的地震随机噪声压制方法
7
作者 韦秀娟 刘兴业 周怀来 《煤田地质与勘探》 北大核心 2025年第5期196-206,共11页
【背景】地震随机噪声压制是提升地震资料质量的关键环节之一,数据驱动的深度学习方法提供了一种智能解决方案。然而,主流的基于卷积神经网络的随机噪声智能压制方法受限于局部感受野特性,导致去噪过程中局部细节与宏观结构的协同优化不... 【背景】地震随机噪声压制是提升地震资料质量的关键环节之一,数据驱动的深度学习方法提供了一种智能解决方案。然而,主流的基于卷积神经网络的随机噪声智能压制方法受限于局部感受野特性,导致去噪过程中局部细节与宏观结构的协同优化不足,进而影响噪声压制精度。广泛应用于全局特征提取的Transformer模型通过自注意力机制能够有效捕获长距离依赖关系,理论上可弥补卷积神经网络在全局建模能力方面的局限性。但其计算慢,资源占用大,应用受限。【目的和方法】针对上述问题,提出了融合卷积Mamba的地震数据随机噪声压制网络(CMUNet)。基于二维选择性扫描技术(沿水平、垂直双方向遍历输入数据),通过状态空间方程构建全局动态系统,实现对地震数据时空特征的跨尺度特征提取,借助Mamba模型的硬件感知并行扫描算法降低计算资源消耗,保证去噪效果的同时提升计算效率。针对地震数据的特点,设计卷积-Mamba混合模块,在UNet编码器中构建层次化特征提取路径,即浅层CNN聚焦局部噪声模式识别,深层Mamba捕获大尺度地质结构关联性;进一步引入残差通道注意力门控,强化有效信号与噪声的特征可分性。【结果和结论】对于合成数据测试,提出的方法相较于UNet在信噪比、峰值信噪比和结构相似性上分别提高了2.4 dB、2.4 dB和0.0056,表现出对随机噪声的有效压制能力及对有效信号的保护能力。在野外实际地震数据应用中,局部相似性图像分析结果显示较低的局部相似值,进一步印证了该方法对有效信号的损伤程度低,展现出更优的保幅性,具有良好应用前景。 展开更多
关键词 地震随机噪声压制 深度学习 卷积神经网络 状态空间模型 Mamba
在线阅读 下载PDF
基于轻量卷积和模型优化的电弧故障检测方法 被引量:1
8
作者 刘艳丽 王浩 张帆 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第10期38-49,共12页
在电动汽车电路系统中,直流串联电弧故障通常发生在接触点松动或线路连接损坏处,会引起火灾、爆炸等事故。为进行电动汽车中的串联型电弧故障研究,首先,搭建了电动汽车电弧故障实验平台,详细分析了不同工况下干路电流波形变化的原因与... 在电动汽车电路系统中,直流串联电弧故障通常发生在接触点松动或线路连接损坏处,会引起火灾、爆炸等事故。为进行电动汽车中的串联型电弧故障研究,首先,搭建了电动汽车电弧故障实验平台,详细分析了不同工况下干路电流波形变化的原因与规律。由于电弧故障检测的高实时性需求,本研究采用了轻量型的卷积操作,即深度可分离卷积,基于深度可分离卷积搭建了电弧故障检测网络,实现了电动汽车电弧故障的检测与故障线路的判别。然后,针对低维度空间中深度可分离卷积特征提取能力受限的问题,本研究对其进行了改进,提出了特征表达能力更加优越的卷积操作:分组可分离卷积。最后,采用了递进式的阶梯结构,从网络浅层至深层,分组可分离卷积内每组的卷积核数量逐渐下降,在保证检测精度的前提下,实现了网络架构的精简与优化。进一步地,对检测模型进行了卷积核尺寸调优,并在结构中添加了轻量化注意力机制。在模型的训练过程中,应用了动态学习率调整策略。通过一系列的模型优化措施,系统性地增强了模型的运行效率与检测精度。模型的检测准确率达到96.76%,同时具有较好的泛化和抗干扰能力。 展开更多
关键词 电动汽车 轻量型卷积操作 深度可分离卷积 分组可分离卷积 模型优化
在线阅读 下载PDF
并联卷积神经网络的近红外光谱定量分析模型 被引量:3
9
作者 于水 宦克为 +1 位作者 刘小溪 王磊 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第6期1627-1635,共9页
近红外光谱分析已成为工农业生产过程质量监控领域中不可或缺的重要分析手段之一,在食品、农业、医药等定性定量分析领域被广泛应用。预测精度高、运行速度快、泛化能力强的近红外光谱预测模型可用于不同物质的定性定量分析。但由于近... 近红外光谱分析已成为工农业生产过程质量监控领域中不可或缺的重要分析手段之一,在食品、农业、医药等定性定量分析领域被广泛应用。预测精度高、运行速度快、泛化能力强的近红外光谱预测模型可用于不同物质的定性定量分析。但由于近红外光谱数据量的激增,传统的近红外光谱建模方法已经出现明显的不足。随着人工智能技术的不断发展,深度学习算法在近红外光谱分析领域得到了广泛应用。提出了一种基于并联卷积神经网络的近红外光谱定量分析模型(PaBATunNet)。该模型由1个一维卷积层、1个并联卷积模块(Module)、1个展平层、4个全连接层和1个参数调节器(PR)组成,Module模块包括5个子模块分别对光谱数据进行线性及非线性多维特征提取,并通过Concatenate函数将提取后的光谱特征数据进行拼接,PR模块通过调节优化PaBATunNet模型参数,提高模型预测精度。基于Gard-CAM思想给出了PaBATunNet模型高贡献度特征波长,增加了PaBATunNet模型的可解释性。以谷物、柴油、啤酒、牛奶四组公开的近红外光谱数据为例,将PaBATunNet模型的预测结果与偏最小二乘(PLS)、主成分回归(PCR)、支持向量机(SVM)和BP神经网络(BP)模型的预测结果进行比较。结果表明,与PLS相比,PaBATunNet模型在谷物、柴油、啤酒、牛奶数据集的预测精度上分别提高了30.0%、40.7%、43.0%、52.8%;与PCR相比,PaBATunNet模型的预测精度分别提高了28.8%、35.9%、40.8%、52.2%;与SVM相比,PaBATunNet模型的预测精度分别提高了45.5%、37.4%、45.3%、54.7%;与BP相比,PaBATunNet模型的预测精度分别提高了7.9%、32.4%、90.1%、62.0%。基于并联卷积神经网络的近红外光谱建模方法相比于传统建模方法解决了模型预测精度低、运行时间长、泛化能力差以及可解释性不强等问题,可有效应用于工农业生产中不同物质的定量分析,为建立快速、无损、高精度的近红外光谱定量分析模型提供了科学基础。 展开更多
关键词 近红外光谱 深度学习 并联卷积神经网络 定量分析 预测模型
在线阅读 下载PDF
轻量化深度卷积神经网络设计研究进展 被引量:2
10
作者 周志飞 李华 +3 位作者 冯毅雄 陆见光 钱松荣 李少波 《计算机工程与应用》 CSCD 北大核心 2024年第22期1-17,共17页
轻量化设计是解决深度卷积神经网络(deep convolutional neural network,DCNN)对设备性能和硬件资源依赖性的流行范式,轻量化的目的是在不牺牲网络性能的前提下,提高计算速度和减少内存占用。综述了DCNN的轻量化设计方法,着重回顾了近年... 轻量化设计是解决深度卷积神经网络(deep convolutional neural network,DCNN)对设备性能和硬件资源依赖性的流行范式,轻量化的目的是在不牺牲网络性能的前提下,提高计算速度和减少内存占用。综述了DCNN的轻量化设计方法,着重回顾了近年来DCNN的研究进展,包括体系设计和模型压缩两大轻量化策略,深入比较了这两类方法的创新性、优势与局限性,并探讨了支撑轻量化模型的底层框架。此外,对轻量化网络已经成功应用的场景进行了描述,并对DCNN轻量化的未来发展趋势进行了预测,旨在为深度卷积神经网络的轻量化研究提供有益的见解和参考。 展开更多
关键词 深度卷积神经网络 轻量化 体系设计 模型压缩
在线阅读 下载PDF
融合CNN和WDF模型的电商企业商品销量预测研究
11
作者 袁瑞萍 魏辉 +1 位作者 傅之家 李俊韬 《计算机工程与应用》 北大核心 2025年第2期335-343,共9页
为了适应电商企业商品销量数据规模大、维度高、非线性等特征,并提高销量预测的准确性,创新性地提出一种卷积神经网络融合加权深度森林(CNN-WDF)的销量预测方法。利用卷积神经网络(CNN)处理高维数据的优势对电商企业商品销量数据进行特... 为了适应电商企业商品销量数据规模大、维度高、非线性等特征,并提高销量预测的准确性,创新性地提出一种卷积神经网络融合加权深度森林(CNN-WDF)的销量预测方法。利用卷积神经网络(CNN)处理高维数据的优势对电商企业商品销量数据进行特征提取,降低冗余度和模型训练复杂度。提出一种改进的加权深度森林模型(WDF)进行商品销量预测。该模型依据各个子树的预测准确率计算每一级森林中该子树的权重以提高整体预测准确性,且相对于传统深度网络模型具有超参数少、可解释性强等优点。利用京东商品销量数据进行实验验证,结果表明:CNN-WDF融合模型在不同规模京东销售数据集上,预测准确率均显著高于其他对比模型,且随着数据集规模的扩大,预测准确率提高更加明显。 展开更多
关键词 商品销量预测 深度学习 融合模型 卷积神经网络 加权深度森林
在线阅读 下载PDF
基于多参数磁共振成像特征的深度学习预测直肠癌患者的BRAF基因突变状态
12
作者 胡鸿博 赵升 +2 位作者 姜昊 张莹 姜慧杰 《磁共振成像》 北大核心 2025年第1期22-28,共7页
目的探讨鼠类肉瘤病毒癌基因同源物B基因(B-Raf proto-oncogene serine/threonine kinase,BRAF)突变状态与直肠癌患者生存率的相关性。本研究旨在评估影像组学模型预测结直肠癌患者BRAF基因突变情况的可行性。材料与方法对我院2020年6月... 目的探讨鼠类肉瘤病毒癌基因同源物B基因(B-Raf proto-oncogene serine/threonine kinase,BRAF)突变状态与直肠癌患者生存率的相关性。本研究旨在评估影像组学模型预测结直肠癌患者BRAF基因突变情况的可行性。材料与方法对我院2020年6月至2023年6月确诊为直肠癌的患者病例资料进行回顾性分析,采用外显子测序鉴定BRAF基因突变状态。通过生存分析评估BRAF基因突变与直肠癌预后的关系。从260名接受多参数MRI的直肠癌患者中提取7388个特征模块,包括术前T1加权图像(T1-weighted imaging,T1WI)、T2加权图像(T2-weighted imaging,T2WI)和对比增强T1加权图像(contrast-enhanced T1-weighted imaging,CE-T1WI)。随后,基于卷积神经网络(convolutional neural network,CNN)构建了放射组学模型。通过受试者工作特征曲线(receiver operating characteristic,ROC)曲线、准确率、敏感度和特异度等指标评估模型效能。结果本研究共纳入89例BRAF突变患者和171例BRAF野生型患者。两组在肿瘤恶性分期、年龄、性别等临床特征上差异无统计学意义(P>0.05),但5年生存率差异存在统计学意义,BRAF突变组生存期低于BRAF野生型组(P<0.001)。所构建模型的ROC曲线下面积(area under the curve,AUC)为0.929,与病理结果一致性分析的Kappa统计量为0.87,表明模型具有较高的预测价值。结论基于CNN的放射组学特征模型在区分直肠癌患者BRAF突变状态方面表现优异,为未来无创筛查BRAF突变状态提供了新的研究思路。 展开更多
关键词 直肠癌 磁共振成像 影像特征 深度学习 鼠类肉瘤病毒癌基因同源物B基因 卷积神经网络 影像组学模型
在线阅读 下载PDF
基于深度学习的山洪时空预测代理模型 被引量:2
13
作者 杨勇川 王俊彦 +1 位作者 文海家 王乃玉 《自然灾害学报》 CSCD 北大核心 2024年第4期164-175,共12页
山洪是全球范围内最危险的自然灾害之一,具有突发性强、成灾快和破坏力大并且难以短时临近预测的特点。传统山洪预报预警方法主要依赖于基于物理机制的水文-水动力山洪过程模拟,然而这种方法计算复杂耗时较长,难以满足山洪的短时临近预... 山洪是全球范围内最危险的自然灾害之一,具有突发性强、成灾快和破坏力大并且难以短时临近预测的特点。传统山洪预报预警方法主要依赖于基于物理机制的水文-水动力山洪过程模拟,然而这种方法计算复杂耗时较长,难以满足山洪的短时临近预测需求。以浙江临安仁里村为例,在水文-水动力物理模拟所产生的8378条降雨时序和对应山洪淹没时空序列数据集的基础上,以基于卷积门控循环单元(convolutional gated recurrent unit convGRU)的深度神经网络作为核心,构建山洪时空序列预测代理模型。该模型通过输入过去24小时降雨观测时序和未来6小时的降雨预报时序,可实现未来6小时山洪淹没时空演变过程的快速预测。代理模型在测试集中能可靠地预测未来逐小时的山洪淹没范围、最大淹没深度以及淹没位置,未来6小时预测的可决系数均值为0.96,且预测速度平均比物理模拟快15625倍。这表明该代理模型能够捕捉物理模拟中降雨到山洪的复杂映射关系,实现目标区域山洪的快速预测,为山洪预警及应急响应决策制定提供有力的模型基础。 展开更多
关键词 深度学习 山洪模型 时空序列预测 卷积门控循环单元 代理模型
在线阅读 下载PDF
基于用户数据特征深度挖掘的快速图书检索算法
14
作者 窦淑庆 刘思豆 《现代电子技术》 北大核心 2025年第14期137-142,共6页
针对传统图书推荐系统所得到的计算结果滞后于实时需求且准确性较低的缺陷,文中基于用户画像数据,提出一种快速图书检索算法。该算法在用户画像构建部分对静态属性抽取和动态标签行为进行建模。在图书特征提取模型中,使用BERT-Word2Vec... 针对传统图书推荐系统所得到的计算结果滞后于实时需求且准确性较低的缺陷,文中基于用户画像数据,提出一种快速图书检索算法。该算法在用户画像构建部分对静态属性抽取和动态标签行为进行建模。在图书特征提取模型中,使用BERT-Word2Vec作为基础框架进行多模态特征提取,并利用双塔深度匹配模型构建了用户MLP塔和图书改进CNN塔,对特征进行充分细致的多维分析。模型通过将实时反馈机制Kafka-Redis流处理算法与会话注意力加权融合,最终实现了场景化的推荐。实验测试结果显示,NDCG@10指标较最优基准提升了约21.0%,行为反馈延迟在峰值500 QPS流量下小于等于3.5 s。表明所提算法能够为知识服务场景提供兼具准确性、时效性与场景适应性的信息推荐解决方案。 展开更多
关键词 用户画像 双向编码器表示技术 双塔深度匹配模型 多层感知器 卷积神经网络 推荐算法
在线阅读 下载PDF
基于深度融合模型的气膜密封端面状态识别方法 被引量:2
15
作者 刘伟 张书尧 +2 位作者 李双喜 马亚宾 梁坤海 《机电工程》 CAS 北大核心 2024年第7期1198-1206,共9页
气膜密封装置是工业领域应用广泛的一种密封技术,其可靠的密封性能对于设备正常运行至关重要。气膜密封装置的动静密封环接触端面相对运动会产生摩擦,摩擦过程会产生复杂的声发射信号,这些信号往往隐含密封端面运行状况的重要信息。采... 气膜密封装置是工业领域应用广泛的一种密封技术,其可靠的密封性能对于设备正常运行至关重要。气膜密封装置的动静密封环接触端面相对运动会产生摩擦,摩擦过程会产生复杂的声发射信号,这些信号往往隐含密封端面运行状况的重要信息。采用传统的方法往往难以准确识别和分类这些微弱的特征信号,因此需要开发更高精度的故障诊断方法。针对机械密封动、静环端面摩擦状态难以识别这一问题,以气膜密封装置为研究对象,提出了一种基于深度融合模型的气膜密封端面状态识别方法。首先,采用声发射传感器及采集设备,对密封端面的声发射信号进行了采集;其次,利用小波包变换方法对采集到的信号进行了滤波处理,并提取了时域和频域的微弱特征;然后,将深度随机森林(DRF)作为分类层融入卷积神经网络(CNN)形成了融合模型,对预先处理过的密封装置运行状态的特征信息进行了识别和分类;最后,根据实验的泄漏量,使用混淆矩阵和受试者工作曲线分析了两种模型的特征提取能力。研究结果表明:CNN-DRF融合模型对于密封端面声发射信号的两种特征识别精度分别为96%和98%,与传统的CNN模型相比,其可以充分提取信号特征信息,具有更出色的故障诊断能力。 展开更多
关键词 气膜密封技术 机械密封 声发射信号 小波包变换方法 融合模型 深度随机森林 卷积神经网络 特征提取 特征识别精度
在线阅读 下载PDF
基于卷积神经网络的福建省区域滑坡灾害预警模型 被引量:10
16
作者 董力豪 刘艳辉 +1 位作者 黄俊宝 刘海宁 《水文地质工程地质》 CSCD 北大核心 2024年第1期145-153,共9页
福建省滑坡灾害频发,开展区域尺度上的滑坡灾害预警是防灾减灾的重要手段,但由于滑坡成灾机理复杂,传统的区域滑坡预警方法存在精度不足等问题。深度学习是指通过构建神经网络模型进行特征的提取、抽象、表示与学习的技术,是机器学习的... 福建省滑坡灾害频发,开展区域尺度上的滑坡灾害预警是防灾减灾的重要手段,但由于滑坡成灾机理复杂,传统的区域滑坡预警方法存在精度不足等问题。深度学习是指通过构建神经网络模型进行特征的提取、抽象、表示与学习的技术,是机器学习的一种。卷积神经网络作为一种经典的深度学习算法,具有比传统机器学习更强大的分类能力与表征能力。文章以福建省为研究区,将卷积神经网络引入滑坡灾害预警领域,构建福建省区域滑坡预警模型,过程及结果如下:(1)采用SMOTE优化算法对2010—2018年福建省滑坡灾害样本库进行优化,扩充正样本的个数,将正负样本比例从1∶3.4扩充到1∶2,样本总量达到18040个;(2)构建卷积神经网络模型结构,模型结构包括一个输入层、两个卷积层、两个最大池化层和一个全连接层以及一个输出层;(3)使用卷积神经网络对优化后的样本(2010—2018年样本的80%作为训练集)进行训练,并用贝叶斯优化算法优化模型超参数,得到福建省区域滑坡预警模型;(4)以2010—2018年样本的20%作为测试集对模型进行测试,采用混淆矩阵、ROC曲线进行模型测试,结果显示模型准确度为0.96~0.97,AUC值达到0.977,模型精度与泛化能力良好;(5)以2019年汛期滑坡灾害实况作为正样本,通过时空采样的方法采集负样本,构建2019年区域滑坡样本校验集(样本数603个),对模型进行进一步实况校验,采用混淆矩阵、ROC曲线进行模型校验,结果显示模型准确度为0.75~0.85,AUC值为0.852。虽然仅用了2019年汛期的滑坡实况样本进行校验,但也达到较好的效果。将卷积神经网络算法应用到区域滑坡预警中,为建立区域滑坡预警模型提供了一种新的途径,初步校验表明,模型效果良好,今后将在福建省对模型进行进一步的应用与校验。 展开更多
关键词 滑坡灾害 预警模型 深度学习 卷积神经网络 模型构建
在线阅读 下载PDF
基于双输入输出卷积神经网络代理模型的油藏自动历史拟合研究
17
作者 陈旭 张凯 +3 位作者 刘晨 张金鼎 张黎明 姚军 《油气地质与采收率》 CAS CSCD 北大核心 2024年第3期165-177,共13页
传统油藏自动历史拟合方法需进行多次计算耗时的油藏数值模拟,而深度学习代理模型可以实现高效且精度近似的油藏数值模拟替代计算。在基于深度学习代理模型的油藏自动历史拟合方法中,通常将采用油藏自动历史拟合方法进行调整的油藏不确... 传统油藏自动历史拟合方法需进行多次计算耗时的油藏数值模拟,而深度学习代理模型可以实现高效且精度近似的油藏数值模拟替代计算。在基于深度学习代理模型的油藏自动历史拟合方法中,通常将采用油藏自动历史拟合方法进行调整的油藏不确定性参数作为深度学习代理模型的输入参数。现有的深度学习代理模型常为单一输入输出的神经网络模型架构,并未考虑油藏自动历史拟合方法需要对多个油藏不确定性参数进行调整,且需要训练多个深度学习代理模型以实现对油藏含水饱和度场分布及压力场分布的预测。为此,提出了一种基于双输入输出卷积神经网络代理模型的油藏自动历史拟合方法,将油藏渗透率场分布及相对渗透率参数作为输入,使用双输入输出卷积神经网络同时对油藏含水饱和度场分布及压力场分布进行预测,利用Peaceman方程计算产量,并耦合到多重数据同化集合平滑器(ES-MDA)方法中,对油藏渗透率场分布及相对渗透率参数进行反演更新,实现较为高效的油藏自动历史拟合求解。研究结果表明:双输入输出卷积神经网络代理模型在指定时间步的油藏含水饱和度场分布、压力场分布的预测精度均为93%以上。相较于传统油藏自动历史拟合方法,基于双输入输出卷积神经网络代理模型的油藏自动历史拟合方法避免了多次调用油藏数值模拟器的计算耗时问题,提高了拟合效率。 展开更多
关键词 油藏自动历史拟合 油藏数值模拟 深度学习 代理模型 双输入输出卷积神经网络
在线阅读 下载PDF
深度卷积记忆网络时空数据模型 被引量:6
18
作者 秦超 高晓光 万开方 《自动化学报》 EI CSCD 北大核心 2020年第3期451-462,共12页
时空数据是包含时间和空间属性的数据类型.研究时空数据需要设计时空数据模型,用以处理数据与时间和空间的关系,得到信息对象由于时间和空间改变而产生的行为状态变化的趋势.交通信息数据是一类典型的时空数据.由于交通网络的复杂性和... 时空数据是包含时间和空间属性的数据类型.研究时空数据需要设计时空数据模型,用以处理数据与时间和空间的关系,得到信息对象由于时间和空间改变而产生的行为状态变化的趋势.交通信息数据是一类典型的时空数据.由于交通网络的复杂性和多变性,以及与时间和空间的强耦合性,使得传统的系统仿真和数据分析方法不能有效地得到数据之间的关系.本文通过对交通数据中临近空间属性信息的处理,解决了由于传统时空数据模型只关注时间属性导致模型对短时间间隔数据预测能力不足的问题,进而提高模型预测未来信息的能力.本文提出一个全新的时空数据模型—深度卷积记忆网络.深度卷积记忆网络是一个包含卷积神经网络和长短时间记忆网络的多元网络结构,可以提取数据的时间和空间属性信息,通过加入周期和镜像特征提取模块对网络进行修正.通过对两类典型时空数据集的验证,表明深度卷积记忆网络在预测短时间间隔的数据信息时,相较于传统的时空数据模型,不仅预测误差有了很大程度的降低,而且模型的训练速度也得到提升. 展开更多
关键词 时空数据模型 深度卷积记忆网络 时间特征 空间特征
在线阅读 下载PDF
面向深度分类模型超参数自优化的代理模型
19
作者 张睿 潘俊铭 +3 位作者 白晓露 胡静 张荣国 张鹏云 《计算机应用》 CSCD 北大核心 2024年第10期3021-3031,共11页
为进一步提高深度分类模型超参数多目标自适应寻优效率,提出一种筛选式增强Dropout代理(FEDA)模型。首先,构建点对互信息约束增强的双通道Dropout神经网络,增强对高维超参数深度分类模型的拟合,并结合聚集选解策略加速候选解集的选取;其... 为进一步提高深度分类模型超参数多目标自适应寻优效率,提出一种筛选式增强Dropout代理(FEDA)模型。首先,构建点对互信息约束增强的双通道Dropout神经网络,增强对高维超参数深度分类模型的拟合,并结合聚集选解策略加速候选解集的选取;其次,设计一种结合模型管理策略的算法FEDA-ARMOEA(FEDA model-A novel preference-based dominance Relation for Multi-Objective Evolutionary Algorithm)均衡种群个体的收敛性和多样性,协助FEDA提高深度分类模型训练及超参数自优化效率。将FEDA-ARMOEA与EDN-ARMOEA(Efficient Dropout neural Network-assisted AR-MOEA)、HeE-MOEA(Heterogeneous Ensemble-based infill criterion for Multi-Objective Evolutionary Algorithm)等算法进行对比实验,实验结果表明,FEDA-ARMOEA在56组测试问题中的41组上表现较好。在工业应用焊缝数据集MTF和公共数据集CIFAR-10上实验,FEDA-ARMOEA优化的分类模型的精度分别达到96.16%和93.79%,训练时间相较于对比算法分别降低6.94%~47.04%和4.44%~39.07%,均优于对比算法,验证了所提算法的有效性和泛化性。 展开更多
关键词 深度卷积神经网络 分类模型 超参数优化 代理模型 模型优化
在线阅读 下载PDF
基于模型重建的深度卷积网络权值可视化方法 被引量:2
20
作者 刘嘉铭 邢孟道 +1 位作者 符吉祥 徐丹 《电子与信息学报》 EI CSCD 北大核心 2019年第9期2194-2200,共7页
针对深度卷积网络原理分析的问题,该文提出一种基于模型重建的权值可视化方法。首先利用原有的神经网络对测试样本进行前向传播,以获取重建模型所需要的先验信息;然后对原本网络中的部分结构进行修改,使其便于后续的参数计算;再利用正... 针对深度卷积网络原理分析的问题,该文提出一种基于模型重建的权值可视化方法。首先利用原有的神经网络对测试样本进行前向传播,以获取重建模型所需要的先验信息;然后对原本网络中的部分结构进行修改,使其便于后续的参数计算;再利用正交向量组,逐一地计算重建模型的参数;最后将计算所得的参数按照特定的顺序进行重排列,实现权值的可视化。实验结果表明,对于满足一定条件的深度卷积网络,利用该文所提方法重建的模型在分类过程的前向传播运算中与原模型完全等效,并且可以明显观察到重建后模型的权值所具有的特征,从而分析神经网络实现图像分类的原理。 展开更多
关键词 深度卷积网络 可视化 模型重建
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部