期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
基于GoogLeNet与迁移学习的质子交换膜燃料电池集成系统故障诊断 被引量:1
1
作者 赵波 刘相万 +3 位作者 章雷其 陈哲 张领先 谢长君 《中国电机工程学报》 EI CSCD 北大核心 2024年第13期5147-5157,I0011,共12页
为准确判别质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)系统在动态阶跃工作电流下的故障类型,该文建立了PEMFC集成系统模型,提出一种基于GoogLeNet卷积神经网络与迁移学习的PEMFC故障诊断方法。首先,根据燃料电池运... 为准确判别质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)系统在动态阶跃工作电流下的故障类型,该文建立了PEMFC集成系统模型,提出一种基于GoogLeNet卷积神经网络与迁移学习的PEMFC故障诊断方法。首先,根据燃料电池运行过程的电化学反应机理与经验公式建了PEMFC集成系统模型,辅机系统包括冷却系统、空气供给系统和供氢系统。然后,搭建燃料电池测试台架,利用实验数据验证搭建的PEMFC集成系统模型,并改变模型部件参数产生特征故障图像数据集。最后,采用迁移学习将预训练模型中的权重迁移到GoogLeNet模型中,以提高分类模型的收敛速度和泛化能力。2000组故障样本诊断结果表明,PEMFC集成系统在正常、冷却系统故障、氢气饥饿、空气饥饿和水淹故障共5种运行状态下的诊断精确率分别为99.30%、100%、99.10%、100%和99.10%,综合诊断准确率达99.50%,结果证明所提方法具有较高的分类精度和鲁棒性。 展开更多
关键词 质子交换膜燃料电池集成系统 googlenet卷积神经网络 迁移学习 故障诊断
在线阅读 下载PDF
基于DIGGCN-net的工业机器人交叉滚子轴承故障检测
2
作者 李浩 付辉 《机床与液压》 北大核心 2025年第11期61-68,共8页
针对工业机器人在变负荷、大噪声的复杂工作环境中其交叉滚子轴承故障难以有效诊断,从而带来生产隐患的问题,提出一种深度Involution-GoogleNet图神经网络工业机器人交叉滚子轴承故障诊断方法。通过Meyer小波解析对轴承振动信号进行处理... 针对工业机器人在变负荷、大噪声的复杂工作环境中其交叉滚子轴承故障难以有效诊断,从而带来生产隐患的问题,提出一种深度Involution-GoogleNet图神经网络工业机器人交叉滚子轴承故障诊断方法。通过Meyer小波解析对轴承振动信号进行处理,以获得各频带中的局部特征数据,并有效减少特征处理过程中出现的相位畸变。采用GoogleNet结构下的M尺度图卷积核完成局部特征获取,设计深度Involution特征转换网络以完成特征映射,从而构建时频特征与隐层特征之间的非线性关联。采用GR-SVM方法完成故障诊断,该方法能够适应样本有限、非线性与局部极值等问题。最后,针对GSQX2000-5六轴工业机器人采集振动信号样本,完成故障诊断准确性、故障信号数据可视化、变工况和变噪声实验分析。结果表明:所提方法在交叉滚子轴承滚动体、内圈、外圈故障和正常状态下的诊断准确率分别可达94.5%、93.8%、92.9%和95.7%,高于其他两种对比方法;所获得样本展现出较强的聚类状态;在变工况和变噪声环境中,均具有较高的故障诊断准确率。 展开更多
关键词 工业机器人 交叉滚子轴承 故障检测 Involution-googlenet 图神经网络
在线阅读 下载PDF
基于改进GoogLeNet的飞机尾流快速识别 被引量:4
3
作者 潘卫军 冷元飞 +1 位作者 吴天祎 王玄 《兵器装备工程学报》 CAS CSCD 北大核心 2022年第7期38-44,共7页
为了识别繁忙近地空域中的飞机尾流,提高空中交通管制的智能化水平,结合激光雷达特性和尾流演化特点,通过改进GoogLeNet网络和组合残差结构,提出了一种针对尾流快速识别的卷积神经网络模型。在双流的进离场区域使用多普勒激光雷达对风... 为了识别繁忙近地空域中的飞机尾流,提高空中交通管制的智能化水平,结合激光雷达特性和尾流演化特点,通过改进GoogLeNet网络和组合残差结构,提出了一种针对尾流快速识别的卷积神经网络模型。在双流的进离场区域使用多普勒激光雷达对风场进行采样,得到目标区域的径向速度场;所采集的数据预处理后输入到模型分别进行训练、验证、测试。结果表明,相比于AlexNet、GoogLeNet模型,所提出卷积神经网络模型以0.45 M的低参数量在飞机尾流的识别准确度达到98.44%,在实验平台上的检测速度达到160 Fps/s。该模型可在复杂的环境下,快速准确地识别飞机尾涡。 展开更多
关键词 尾流识别 googlenet卷积神经网络 目标识别 多普勒激光雷达 可视化
在线阅读 下载PDF
迁移学习模式下基于GoogLeNet网络的风电机组视觉检测 被引量:10
4
作者 徐一鸣 张娟 +2 位作者 刘成成 顾菊平 潘高超 《计算机科学》 CSCD 北大核心 2019年第5期260-265,共6页
针对无人机航拍环境下拍摄角度变换、特征不显著等干扰问题,提出一种改进的GoogLeNet卷积神经网络对风电机组进行识别和定位,无需人工预选取即可自动提取风电机组类别特征。通过GoogLeNet网络构造风电机组深度特征向量,在网络模型训练... 针对无人机航拍环境下拍摄角度变换、特征不显著等干扰问题,提出一种改进的GoogLeNet卷积神经网络对风电机组进行识别和定位,无需人工预选取即可自动提取风电机组类别特征。通过GoogLeNet网络构造风电机组深度特征向量,在网络模型训练过程中引入迁移学习的概念,利用风电机组图像训练已预训练的GoogLeNet网络,在加快模型训练速度的同时,能避免分类网络陷入局部最优解。并在Faster RCNN框架下采用区域建议网络和多任务损失函数将候选区域搜索和边框回归融入到网络中,实现航拍图像中风电机组的自动分类和标注,缩短数据处理时间。实验结果表明,通过迁移学习的手段,利用优化的GoogLeNet网络能改善复杂航拍环境下的目标视觉检测准确率,完成风电机组自动定位任务,基于GoogLeNet的风电机组平均准确率达到了96%以上。 展开更多
关键词 风电机组 视觉检测 深度学习 卷积神经网络 googlenet模型 迁移学习
在线阅读 下载PDF
基于改进GoogLeNet的锌渣识别算法 被引量:7
5
作者 张振洲 熊凌 +3 位作者 李克波 陈刚 但斌斌 吴怀宇 《武汉科技大学学报》 CAS 北大核心 2021年第3期182-187,共6页
针对目前热镀锌工艺中捞渣机器人工作效率低、缺乏选择性等问题,提出一种基于深度学习的锌渣识别算法,以提高捞渣生产线无人化水平。首先,在GoogLeNet网络基础上进行改进,并搭建了适用于实际生产环境的锌渣识别模型;其次,利用经验丰富... 针对目前热镀锌工艺中捞渣机器人工作效率低、缺乏选择性等问题,提出一种基于深度学习的锌渣识别算法,以提高捞渣生产线无人化水平。首先,在GoogLeNet网络基础上进行改进,并搭建了适用于实际生产环境的锌渣识别模型;其次,利用经验丰富的工作人员所标注的薄渣和厚渣这两类锌渣图片来建立数据库,完成锌渣分类模型的训练;最后,将工业相机采集到的锌渣图像进行分块处理,标记每张小图的位置,将分割后的小图输入到训练好的模型中完成分类,并得到待捞锌渣的位置。实验结果显示,本文方法在测试集上的识别准确率达到99.1%,高于对比算法,并且针对每张锌渣原始图像的平均识别时间为0.36 s,只有传统GoogLeNet模型的53%,这证明所提出的锌渣识别算法具有较好的工业应用前景。 展开更多
关键词 锌渣识别 捞渣 全局平均池化 深度学习 googlenet 卷积神经网络 图像分块
在线阅读 下载PDF
一种基于GoogLeNet卷积神经网络的木节缺陷识别方法 被引量:21
6
作者 高明宇 倪海明 +3 位作者 张博洋 陈剑峰 戚大伟 牟洪波 《森林工程》 北大核心 2021年第4期66-70,共5页
为了能够对木节缺陷进行准确识别,减少木材的浪费,本研究在Pytorch深度学习框架的基础上,提出一种基于GoogLeNet卷积神经网络的木节缺陷识别方法。该方法利用GoogLeNet网络对朽节、干节和死节等7种云杉木节缺陷的RGB图像进行自动提取特... 为了能够对木节缺陷进行准确识别,减少木材的浪费,本研究在Pytorch深度学习框架的基础上,提出一种基于GoogLeNet卷积神经网络的木节缺陷识别方法。该方法利用GoogLeNet网络对朽节、干节和死节等7种云杉木节缺陷的RGB图像进行自动提取特征,不需要对图像进行预处理,即可实现分类识别,采用全局平均池化的方法来代替全连接层,减少网络的参量。同时为了防止网络的过拟合,在网络中使用Dropout机制。实验结果表明,利用该卷积神经网络对7种木节缺陷的识别率可以达到95.42%,在木节缺陷图像处理中,GoogLeNet模型能准确有效地识别木节缺陷。 展开更多
关键词 卷积神经网络 googlenet 木节缺陷图像 缺陷识别
在线阅读 下载PDF
基于GoogLeNet深度迁移学习的苹果缺陷检测方法 被引量:63
7
作者 薛勇 王立扬 +1 位作者 张瑜 沈群 《农业机械学报》 EI CAS CSCD 北大核心 2020年第7期30-35,共6页
针对目前国内苹果分选大部分以人工操作的现状,提出利用GoogLeNet深度迁移模型对苹果缺陷进行检测。检测结果表明,本文方法对扩充后的1932个训练样本的识别准确率为100%,对235个测试样本的识别准确率为91.91%。为评估目前苹果缺陷检测... 针对目前国内苹果分选大部分以人工操作的现状,提出利用GoogLeNet深度迁移模型对苹果缺陷进行检测。检测结果表明,本文方法对扩充后的1932个训练样本的识别准确率为100%,对235个测试样本的识别准确率为91.91%。为评估目前苹果缺陷检测常用算法的性能,将GoogLeNet与浅层卷积神经网络(AlexNet和改进型LeNet-5)及传统机器学习方法(K-NN、RF、SVM)进行了对比,结果表明,与苹果缺陷检测的常用算法相比,本文方法具有更好的泛化能力与鲁棒性。 展开更多
关键词 苹果 缺陷检测 googlenet 深层卷积神经网络
在线阅读 下载PDF
基于改进的GoogLeNet鸭蛋表面缺陷检测 被引量:9
8
作者 肖旺 杨煜俊 +2 位作者 申启访 单森森 黄越 《食品与机械》 北大核心 2021年第6期162-167,共6页
文章提出了一种基于改进的GoogLeNet(GoogLeNet-Mini)的鸭蛋表面缺陷检测方法,并对比其他3种神经网络GoogLeNet、VGG16和AlexNet。结果表明,4种网络的测试集准确率分别为95.88%,94.16%,92.75%,85.43%。GoogLeNet-Mini对测试集3类鸭蛋(... 文章提出了一种基于改进的GoogLeNet(GoogLeNet-Mini)的鸭蛋表面缺陷检测方法,并对比其他3种神经网络GoogLeNet、VGG16和AlexNet。结果表明,4种网络的测试集准确率分别为95.88%,94.16%,92.75%,85.43%。GoogLeNet-Mini对测试集3类鸭蛋(正常、脏污、破损)的检测准确率分别为98.43%,97.45%,95.88%。与GoogLeNet、VGG16和AlexNet相比,GoogLeNet-Mini具有更高的准确率,更好的泛化性与鲁棒性,且对3类鸭蛋的检测准确度均能达到生产要求,检测范围适用于脏污面积超过5%,破损面积超过2%的鸭蛋。 展开更多
关键词 鸭蛋 表面缺陷 googlenet-Mini 神经网络
在线阅读 下载PDF
基于改进GoogLeNet的遥感图像分类方法 被引量:10
9
作者 韩要昌 王洁 +1 位作者 史通 蔡启航 《弹箭与制导学报》 北大核心 2019年第5期139-142,153,共5页
针对遥感图像的分类问题,文中提出了一种基于GoogLeNet卷积神经网络模型的遥感图像分类方法。根据遥感图像的特点,适当改进了GoogLeNet的网络结构;同时借鉴迁移学习的思想,采用在ImageNet上预训练的模型对不同的遥感图像数据集进行训练... 针对遥感图像的分类问题,文中提出了一种基于GoogLeNet卷积神经网络模型的遥感图像分类方法。根据遥感图像的特点,适当改进了GoogLeNet的网络结构;同时借鉴迁移学习的思想,采用在ImageNet上预训练的模型对不同的遥感图像数据集进行训练测试。分类准确率较改进前提高了10%以上,并节省了网络的训练时间。实验结果验证了该方法能提高遥感图像的分类准确率和节省训练时间的有效性。 展开更多
关键词 遥感图像 卷积神经网络 googlenet 迁移学习
在线阅读 下载PDF
基于GoogLeNet的混凝土细观模型应力-应变曲线预测 被引量:5
10
作者 周杰 赵婷婷 +2 位作者 陈青青 王志勇 王志华 《应用数学和力学》 CSCD 北大核心 2022年第3期290-299,共10页
非均质复合材料的宏观力学性能往往取决于细观组分的分布方式和力学性能,但是建立明确的关系表达式极其困难.为了应对这一挑战,以混凝土为研究对象,提出了一种基于深度学习的策略,能够高效、准确地通过细观模型图像信息获取应力-应变曲... 非均质复合材料的宏观力学性能往往取决于细观组分的分布方式和力学性能,但是建立明确的关系表达式极其困难.为了应对这一挑战,以混凝土为研究对象,提出了一种基于深度学习的策略,能够高效、准确地通过细观模型图像信息获取应力-应变曲线.首先,使用基于卷积神经网络(convolutional neural network,CNN)的GoogLeNet模型进行图像信息识别和提取,并针对应力-应变曲线的复杂性特点,进行了数据预处理操作,并且设计了相应的多任务损失函数.数据集中的细观模型图像采用基于Monte-Carlo的随机骨料模型生成,并且使用数值模拟试验获取对应细观模型的单轴压缩应力-应变曲线.最后,通过对神经网络的训练和测试评估了所提出方法的可行性.结果表明,GoogLeNet模型训练效率和预测精度均优于AlexNet和ResNet模型,具有良好的泛化能力和鲁棒性. 展开更多
关键词 混凝土 细观模型 googlenet 卷积神经网络 应力-应变曲线
在线阅读 下载PDF
基于GoogLeNet-GMP网络的自适应图像水印方法 被引量:1
11
作者 熊丽婷 《电子测量技术》 北大核心 2021年第14期128-134,共7页
为提高水印方案的抗攻击能力和自适应性,提出一种盲水印的GoogLeNet-GMP神经网络方案。首先,所提网络较为简约,最深的路径(即通过预处理网络、嵌入网络和提取网络的路径)仅包含17层。通过在水印预处理网络中提高水印分辨率来保持宿主图... 为提高水印方案的抗攻击能力和自适应性,提出一种盲水印的GoogLeNet-GMP神经网络方案。首先,所提网络较为简约,最深的路径(即通过预处理网络、嵌入网络和提取网络的路径)仅包含17层。通过在水印预处理网络中提高水印分辨率来保持宿主图像的分辨率,由此增强了水印的透明性。同时,在水印预处理网络中使用平均池化,将水印数据的二进制值与宿主图像结合在一起,从而增强了水印的透明性。最后,提取器使用交叉熵作为损失函数,实现嵌入器和提取器之间的训练平衡。实验结果表明,所提方案性能出色,水印容量为0.003 8,数据集中的PSNR均值为40.57 dB。在有意义攻击下的性能优于其他先进方法。 展开更多
关键词 图像水印 googlenet 预处理网络 神经网络 损失函数 分辨率
在线阅读 下载PDF
基于机器学习的电弧行为识别与特征分析
12
作者 肖典 蒲柯伶 +3 位作者 褚卓楠 方乃文 武鹏博 吴斌涛 《焊接学报》 EI CAS CSCD 北大核心 2024年第5期84-89,共6页
电弧熔丝增材制造过程中电弧行为是影响零件成形精度及质量的关键因素之一,针对电弧熔丝增材制造过程中电弧无振荡、摇摆振荡以及圆周振荡3种电弧状态的监测图像,提出一种基于局部二值模式(local binary pattern,LBP)与GoogLeNet神经网... 电弧熔丝增材制造过程中电弧行为是影响零件成形精度及质量的关键因素之一,针对电弧熔丝增材制造过程中电弧无振荡、摇摆振荡以及圆周振荡3种电弧状态的监测图像,提出一种基于局部二值模式(local binary pattern,LBP)与GoogLeNet神经网络结合识别电弧模式的新方法.结果表明,通过局部二值模式获取电弧形态图像中的纹理特征,然后建立GoogLeNet神经网络模型,相比于直接对原始图像进行神经网络的训练,该方法可有效识别电弧长度、宽度以及左右最大倾角随堆积层数的变化规律,从而精准判别电弧所属状态.针对常规存在熔池、熔滴以及复杂背景等因素干扰的电弧形态图像,该方法处理后可获得更清晰的电弧边缘轮廓,更有利于将熔池、熔滴和电弧的形态边界进行划分,最终的状态识别准确率可达99.50%,为电弧熔丝增材制造过程中的电弧状态监测提供理论参考. 展开更多
关键词 电弧状态 局部二值模式 googlenet神经网络 图像处理
在线阅读 下载PDF
基于CNN的水表指针读数识别及STM32实现方案设计 被引量:7
13
作者 张鹏飞 叶哲江 +1 位作者 杨嘉林 李家成 《电子测量技术》 北大核心 2021年第23期61-67,共7页
为了提高卷积神经网络对于水表指针读数识别的准确率,同时实现将卷积神经网络移植到STM32单片机中运行,使用了包含2913张水表指针图片的数据集对GoogLeNet和ResNet-18进行迁移学习和测试,其中GoogLeNet的测试集准确率为89.37%,ResNet-1... 为了提高卷积神经网络对于水表指针读数识别的准确率,同时实现将卷积神经网络移植到STM32单片机中运行,使用了包含2913张水表指针图片的数据集对GoogLeNet和ResNet-18进行迁移学习和测试,其中GoogLeNet的测试集准确率为89.37%,ResNet-18的测试集准确率为93.24%。借鉴于ResNet-18模型的跳跃连接思想,使用了高低层特征融合的方法,在保证感受野大小不变的前提下将7×7大卷积核替换为3个3×3小卷积核的串接以减少网络的参数量,同时减低网络的深度,加快了训练时网络的收敛,之后设计了一个对于水表指针读数识别准确率更高和收敛更快的卷积神经网络模型,此模型的测试集准确率为95.11%。为克服STM32单片机存储资源极其有限的困难,在保证较高准确率的前提下进一步减小网络规模从而降低网络参数量,设计出模型的测试集准确率为91.51%,训练过程在PC端使用MATLAB深度学习工具箱完成,生成的onnx模型仅有948 KB大小,运行占用RAM大小为437.14 KB。 展开更多
关键词 卷积神经网络 STM32单片机 googlenet ResNet-18 特征融合 感受野
在线阅读 下载PDF
MDI训练样本集构建对雷达探测旋翼无人机分类的影响分析 被引量:6
14
作者 吴仁彪 黄诚 +2 位作者 王晓亮 何炜琨 刘闪亮 《信号处理》 CSCD 北大核心 2021年第6期1017-1033,共17页
利用卷积神经网络对目标微多普勒特征进行深度学习是目前雷达探测无人机分类的重要手段。实际应用中,无人机参数如叶片转速、叶片长度、叶片初始相位、无人机方位角、无人机俯仰角、无人机径向速度等参数变化大,导致训练样本变化大。该... 利用卷积神经网络对目标微多普勒特征进行深度学习是目前雷达探测无人机分类的重要手段。实际应用中,无人机参数如叶片转速、叶片长度、叶片初始相位、无人机方位角、无人机俯仰角、无人机径向速度等参数变化大,导致训练样本变化大。该文分析训练样本集对旋翼无人机分类结果的影响。首先建立单旋翼无人直升机、四旋翼无人机和六旋翼无人机雷达回波仿真模型。然后对其进行微多普勒特征分析提取,构建多种不同情况下的合并多普勒图像(Merged Doppler Images,MDI)训练样本集。最后利用GoogLeNet(Inception v1)得到不同情况下的无人机分类结果,分析训练样本集中样本数量、无人机单一参数变化、样本参数涵盖完整性以及无人机参数采样间隔对分类准确率的影响。实验结果表明:训练样本集的差异可能对分类准确率产生显著影响。 展开更多
关键词 雷达目标分类 无人机探测 卷积神经网络 微多普勒特征 googlenet
在线阅读 下载PDF
卷积神经网络的贴片电阻识别应用 被引量:1
15
作者 谌贵辉 何龙 +2 位作者 李忠兵 亢宇欣 江枭宇 《智能系统学报》 CSCD 北大核心 2019年第2期263-272,共10页
贴片电阻由于其体积微小、性能稳定等独特的性质,在当今智能化的电子设备中被广泛使用。为保证贴片电阻的出厂质量,需要对其进行缺陷识别、极性方向识别、正反面识别和种类识别,目前很大程度上依靠人工肉眼进行识别检测,效率低、容易误... 贴片电阻由于其体积微小、性能稳定等独特的性质,在当今智能化的电子设备中被广泛使用。为保证贴片电阻的出厂质量,需要对其进行缺陷识别、极性方向识别、正反面识别和种类识别,目前很大程度上依靠人工肉眼进行识别检测,效率低、容易误检、成本高。本文针对传统图像识别方法的局限性,结合近年来卷积神经网络在图像识别方面所取得的巨大成就,基于AlexNet模型、GoogLeNet模型、ResNet模型思想设计了3种深度适宜、可训练参数约4×10~6(百万)的卷积神经网络,克服了当前主流卷积神经网络模型由于可训练参数过多、模型层数太深导致在贴片电阻识别应用中识别速度不能满足实时性要求、泛化识别准确率低的问题。实验表明,3种模型的识别准确率均超过90%,最高识别准确率达到95%,识别速度达到0.203 s/张(256像素×256像素,CORE I5)。因此,本文设计的3种卷积神经网络可根据具体实际需求进行选用,在实践中具有极强的可行性和可推广性,同时也在提升企业生产效率和产品质量方面具有重要意义。 展开更多
关键词 贴片电阻识别 卷积神经网络 AlexNet模型 googlenet模型 ResNet模型
在线阅读 下载PDF
基于深度卷积神经网络的水稻穗瘟病检测方法 被引量:108
16
作者 黄双萍 孙超 +2 位作者 齐龙 马旭 汪文娟 《农业工程学报》 EI CAS CSCD 北大核心 2017年第20期169-176,共8页
穗瘟是一种严重影响水稻产量及品质的多发病害,有效地检测穗瘟是水稻病害防治的重要任务。该文提出基于深度卷积神经网络GoogLeNet模型的水稻穗瘟病检测方法,该方法利用Inception基本模块重复堆叠构建主体网络。Inception模块利用多尺... 穗瘟是一种严重影响水稻产量及品质的多发病害,有效地检测穗瘟是水稻病害防治的重要任务。该文提出基于深度卷积神经网络GoogLeNet模型的水稻穗瘟病检测方法,该方法利用Inception基本模块重复堆叠构建主体网络。Inception模块利用多尺度卷积核提取不同尺度穗瘟病斑分布式特征并进行级联融合。GoogLeNet利用其结构深度和宽度,学习复杂噪声高光谱图像的隐高维特征表达,并在统一框架中训练Softmax分类器,实现穗瘟病害预测建模。为验证该研究所提方法的有效性,以1 467株田间采集的穗株为试验对象,采用便携式户外高光谱成像仪Gaia Field-F-V10在自然光照条件下拍摄穗株高光谱图像,并由植保专家根据穗瘟病害描述确定其穗瘟标签。所有高光谱图像-标签数据对构成GoogLeNet模型训练和验证的原始数据集。该文采用随机梯度下降算法(SGD,stochastic gradient descent)优化GoogLeNet模型,提出随机扔弃1个波段图像和随机平移平均谱图像亮度的2种数据增强策略,增加训练数据规模,防止模型过拟合并改善其泛化性能。经测试,验证集上穗瘟病害预测最高准确率为92.0%。试验结果表明,利用GoogLeNet建立的深度卷积模型,可以很好地实现水稻穗瘟病害的精准检测,克服室外自然光条件下利用光谱图像进行病害预测面临的困难,将该类研究往实际生产应用推进一大步。 展开更多
关键词 病害 模型 图像处理 高光谱成像 穗瘟病检测 深度卷积神经网络 googlenet
在线阅读 下载PDF
基于卷积神经网络的室内场景识别 被引量:7
17
作者 杨鹏 蔡青青 +1 位作者 孙昊 孙丽红 《郑州大学学报(理学版)》 CAS 北大核心 2018年第3期73-77,共5页
场景识别一直是图像处理领域的重要问题之一,对研究移动机器人定位、计算机视觉等方面具有重要意义.然而,室内场景的复杂性与无序性使室内场景识别研究面临许多挑战.传统的手工提取特征无法充分描述室内场景的信息,而卷积神经网络提取... 场景识别一直是图像处理领域的重要问题之一,对研究移动机器人定位、计算机视觉等方面具有重要意义.然而,室内场景的复杂性与无序性使室内场景识别研究面临许多挑战.传统的手工提取特征无法充分描述室内场景的信息,而卷积神经网络提取的特征能够包含丰富的场景语义和结构信息,且对于平移、比例缩放、倾斜等形式的变形具有高度不变性,因此提出了应用基于卷积神经网络的GoogLeNet网络模型来完成识别任务的方法.该网络模型在深度学习框架Caffe上对MIT_Indoor数据集的识别准确率为59.7%,高于使用传统手工提取特征的算法的准确率,对比结果说明了深度卷积神经网络在室内场景识别问题上的有效性. 展开更多
关键词 场景识别 图像处理 卷积神经网络 googlenet Caffe
在线阅读 下载PDF
基于深度神经网络的人体动作识别方法 被引量:9
18
作者 魏丽冉 岳峻 +2 位作者 朱华 牟梦媛 杨照璐 《济南大学学报(自然科学版)》 CAS 北大核心 2019年第3期215-223,228,共10页
针对静态图像集中人体动作种类繁杂且识别准确率较低的问题,提出一种基于深度神经网络的人体动作识别方法;该方法采用迁移学习的思想对GoogLeNet模型进行改进,使得网络在预训练之后能够对行为个体的种类具有一定的姿势表达能力;采用逻... 针对静态图像集中人体动作种类繁杂且识别准确率较低的问题,提出一种基于深度神经网络的人体动作识别方法;该方法采用迁移学习的思想对GoogLeNet模型进行改进,使得网络在预训练之后能够对行为个体的种类具有一定的姿势表达能力;采用逻辑分类中的逻辑回归多分类来实现动作的多分类,并通过建立动作识别模型应用系统对其进行验证;通过MATLAB2017处理平台对该模型进行测试,并得出图像的平均识别率。结果表明,本文中提出的方法在公开的图像数据集PPMI上的平均识别率相对较高,证实了构建的基于GoogLeNet人体动作识别模型应用系统对人体动作的分类是可行且有效的。 展开更多
关键词 深度神经网络 googlenet模型 动作识别 Softmax分类 静态图像
在线阅读 下载PDF
基于USRP的自动调制识别 被引量:4
19
作者 刘桥平 高兴宇 +1 位作者 邱昕 郭瑞 《计算机应用与软件》 北大核心 2020年第8期110-114,121,共6页
自动调制识别是认知无线电、智能解调器、电子侦察等各种民用及军事应用的基本需求。使用USRP B210采集8种调制类别空中接口IQ数据,训练分类模型实现USRP B210接收空中接口IQ数据实时输出调制类型。为了提高自动调制识别的准确度,优化Re... 自动调制识别是认知无线电、智能解调器、电子侦察等各种民用及军事应用的基本需求。使用USRP B210采集8种调制类别空中接口IQ数据,训练分类模型实现USRP B210接收空中接口IQ数据实时输出调制类型。为了提高自动调制识别的准确度,优化ResNet、GoogLenet、SENet用于自动调制识别。实验结果显示在低信噪比条件下自动调制识别分类准确度有了较大提升。 展开更多
关键词 自动调制识别 软件无线电 神经网络 USRP ResNet googlenet SENet
在线阅读 下载PDF
基于卷积神经网络的管道表面缺陷识别研究 被引量:9
20
作者 袁泽辉 郭慧 周邵萍 《现代电子技术》 北大核心 2020年第17期47-51,共5页
针对传统管道表面缺陷检测方法存在效率低、准确率不高的问题,提出一种通过机器视觉检测管道表面缺陷的方法,在采集管道表面缺陷的图像信息后通过卷积神经网络的算法分类不同的缺陷。通过加入批量归一化层,改进低层和中层卷积核的构造,... 针对传统管道表面缺陷检测方法存在效率低、准确率不高的问题,提出一种通过机器视觉检测管道表面缺陷的方法,在采集管道表面缺陷的图像信息后通过卷积神经网络的算法分类不同的缺陷。通过加入批量归一化层,改进低层和中层卷积核的构造,优化了GoogleNet的构造,提高了卷积神经网络的泛化性和收敛性。试验结果表明,应用卷积神经网络后对管道表面缺陷的识别率较高,显著提高了管道表面缺陷识别的效率和准确率,具有较好的工程意义。 展开更多
关键词 缺陷识别 管道表面缺陷 机器视觉 卷积神经网络 缺陷分类 googlenet构造优化
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部