为对不同堆肥工艺堆肥全过程关键参数进行实时动态分析,该研究以牛粪便和玉米秸秆为原料,进行规模化槽式和膜覆盖好氧堆肥,采集堆肥全过程样本,分析了2种堆肥技术堆肥全过程中含水率、有机质含量和碳氮比等关键参数的变化,并结合Local ...为对不同堆肥工艺堆肥全过程关键参数进行实时动态分析,该研究以牛粪便和玉米秸秆为原料,进行规模化槽式和膜覆盖好氧堆肥,采集堆肥全过程样本,分析了2种堆肥技术堆肥全过程中含水率、有机质含量和碳氮比等关键参数的变化,并结合Local PLS算法建立了2种堆肥技术堆肥全过程中上述参数的通用速测模型,得出以下结果:1)2种主要工艺关键参数数值及变化规律均不同,且在整个堆肥过程中有显著性变化(P<0.05);2)所建立的Local PLS模型的RPD(Ratio of Prediction to Deviation)为4.47,RSD(Relative Standard Deviation)为3.37%,可达到很好的预测效果;有机质含量和碳氮比的R_P^2分别为0.74和0.77,RPD大于1.5,RSD小于10%,模型可用于定量预测;近红外预测值与实测值随堆肥时间的变化趋势具有较好的一致性,可实现规模化堆肥过程中关键参数的实时分析。展开更多
This paper introduces an indoor global localization method by extending and matching features. In the proposed method, the environment is partitioned into convex subdivisions. Local extended maps of the subdivisions a...This paper introduces an indoor global localization method by extending and matching features. In the proposed method, the environment is partitioned into convex subdivisions. Local extended maps of the subdivisions are then built by exten- ding features to constitute the local extended map set. While the robot is moving in the environment, the local extended map of the current local environment is established and then matched with the local extended map set. Therefore, global localization in an indoor environment can be achieved by integrating the position and ori- entation matching rates. Both theoretical analysis and comparison experimental result are provided to verify the effectiveness of the proposed method for global localization.展开更多
Efficient bolted joint design is an essential part of designing the minimum weight aerospace structures, since structural failures usually occur at connections and interface. A comprehensive numerical study of three-d...Efficient bolted joint design is an essential part of designing the minimum weight aerospace structures, since structural failures usually occur at connections and interface. A comprehensive numerical study of three-dimensional(3D) stress variations is prohibitively expensive for a large-scale structure where hundreds of bolts can be present. In this work, the hybrid composite-to-metal bolted connections used in the upper stage of European Ariane 5ME rocket are analyzed using the global-local finite element(FE) approach which involves an approximate analysis of the whole structure followed by a detailed analysis of a significantly smaller region of interest. We calculate the Tsai-Wu failure index and the margin of safety using the stresses obtained from ABAQUS. We find that the composite part of a hybrid bolted connection is prone to failure compared to the metal part. We determine the bolt preload based on the clamp-up load calculated using a maximum preload to make the composite part safe. We conclude that the unsuitable bolt preload may cause the failure of the composite part due to the high stress concentration in the vicinity of the bolt. The global-local analysis provides an efficient computational tool for enhancing 3D stress analysis in the highly loaded region.展开更多
Underground energy and resource development,deep underground energy storage and other projects involve the global stability of multiple interconnected cavern groups under internal and external dynamic disturbances.An ...Underground energy and resource development,deep underground energy storage and other projects involve the global stability of multiple interconnected cavern groups under internal and external dynamic disturbances.An evaluation method of the global stability coefficient of underground caverns based on static overload and dynamic overload was proposed.Firstly,the global failure criterion for caverns was defined based on its band connection of plastic-strain between multi-caverns.Then,overloading calculation of the boundary geostress and seismic intensity on the caverns model was carried out,and the critical unstable state of multi-caverns can be identified,if the plastic-strain band appeared between caverns during these overloading processes.Thus,the global stability coefficient for the multi-caverns under static loading and earthquake was obtained based on the corresponding overloading coefficient.Practical analysis for the Yingliangbao(YLB)hydraulic caverns indicated that this method can not only effectively obtain the global stability coefficient of caverns under static and dynamic earthquake conditions,but also identify the caverns’high-risk zone of local instability through localized plastic strain of surrounding rock.This study can provide some reference for the layout design and seismic optimization of underground cavern group.展开更多
文摘为对不同堆肥工艺堆肥全过程关键参数进行实时动态分析,该研究以牛粪便和玉米秸秆为原料,进行规模化槽式和膜覆盖好氧堆肥,采集堆肥全过程样本,分析了2种堆肥技术堆肥全过程中含水率、有机质含量和碳氮比等关键参数的变化,并结合Local PLS算法建立了2种堆肥技术堆肥全过程中上述参数的通用速测模型,得出以下结果:1)2种主要工艺关键参数数值及变化规律均不同,且在整个堆肥过程中有显著性变化(P<0.05);2)所建立的Local PLS模型的RPD(Ratio of Prediction to Deviation)为4.47,RSD(Relative Standard Deviation)为3.37%,可达到很好的预测效果;有机质含量和碳氮比的R_P^2分别为0.74和0.77,RPD大于1.5,RSD小于10%,模型可用于定量预测;近红外预测值与实测值随堆肥时间的变化趋势具有较好的一致性,可实现规模化堆肥过程中关键参数的实时分析。
基金supported by the National Natural Science Foundation of China(61375079)
文摘This paper introduces an indoor global localization method by extending and matching features. In the proposed method, the environment is partitioned into convex subdivisions. Local extended maps of the subdivisions are then built by exten- ding features to constitute the local extended map set. While the robot is moving in the environment, the local extended map of the current local environment is established and then matched with the local extended map set. Therefore, global localization in an indoor environment can be achieved by integrating the position and ori- entation matching rates. Both theoretical analysis and comparison experimental result are provided to verify the effectiveness of the proposed method for global localization.
基金Project(282522)supported by the European Union's Research and Innovation Funding Programme
文摘Efficient bolted joint design is an essential part of designing the minimum weight aerospace structures, since structural failures usually occur at connections and interface. A comprehensive numerical study of three-dimensional(3D) stress variations is prohibitively expensive for a large-scale structure where hundreds of bolts can be present. In this work, the hybrid composite-to-metal bolted connections used in the upper stage of European Ariane 5ME rocket are analyzed using the global-local finite element(FE) approach which involves an approximate analysis of the whole structure followed by a detailed analysis of a significantly smaller region of interest. We calculate the Tsai-Wu failure index and the margin of safety using the stresses obtained from ABAQUS. We find that the composite part of a hybrid bolted connection is prone to failure compared to the metal part. We determine the bolt preload based on the clamp-up load calculated using a maximum preload to make the composite part safe. We conclude that the unsuitable bolt preload may cause the failure of the composite part due to the high stress concentration in the vicinity of the bolt. The global-local analysis provides an efficient computational tool for enhancing 3D stress analysis in the highly loaded region.
基金Project(2023YFC2907204)supported by the National Key Research and Development Program of ChinaProject(52325905)supported by the National Natural Science Foundation of ChinaProject(DJ-HXGG-2023-16)supported by the Key Technology Research Projects of Power China。
文摘Underground energy and resource development,deep underground energy storage and other projects involve the global stability of multiple interconnected cavern groups under internal and external dynamic disturbances.An evaluation method of the global stability coefficient of underground caverns based on static overload and dynamic overload was proposed.Firstly,the global failure criterion for caverns was defined based on its band connection of plastic-strain between multi-caverns.Then,overloading calculation of the boundary geostress and seismic intensity on the caverns model was carried out,and the critical unstable state of multi-caverns can be identified,if the plastic-strain band appeared between caverns during these overloading processes.Thus,the global stability coefficient for the multi-caverns under static loading and earthquake was obtained based on the corresponding overloading coefficient.Practical analysis for the Yingliangbao(YLB)hydraulic caverns indicated that this method can not only effectively obtain the global stability coefficient of caverns under static and dynamic earthquake conditions,but also identify the caverns’high-risk zone of local instability through localized plastic strain of surrounding rock.This study can provide some reference for the layout design and seismic optimization of underground cavern group.