针对将连续域蚁群优化算法应用于最大似然(maximum likelihood,ML)估计中存在计算量过大的问题,提出一种基于改进蚁群优化(modified ant colony optimization,MACO)算法的最大似然波达方向(maximum likelihood direction of arrival,ML-...针对将连续域蚁群优化算法应用于最大似然(maximum likelihood,ML)估计中存在计算量过大的问题,提出一种基于改进蚁群优化(modified ant colony optimization,MACO)算法的最大似然波达方向(maximum likelihood direction of arrival,ML-DOA)估计方法.采用精英反向学习策略获得较优初始解群体,结合全局跨邻域搜索和高斯核函数局部搜索对蚁群的寻优方式进行优化,扩大了算法的搜索空间并加快了收敛速度,最终得到ML估计方法的非线性全局最优解.仿真结果表明,与基于粒子群优化(particle swarm optimization,PSO)算法、蚁群优化(ant colony optimization,ACO)算法的ML估计方法相比,ML-MACO算法的收敛速度是ML-ACO算法的4倍,计算量是ML-ACO算法的1/3,分辨成功率高于ML-PSO算法和ML-ACO算法,估计误差小于ML-PSO算法和ML-ACO算法.ML-MACO算法以更低的计算量保持了ML算法的优良估计性能,收敛性能更优且估计精度更高.展开更多
针对教与学优化算法容易陷入早熟收敛的问题,本研究提出了一种基于混沌搜索和权重学习的教与学优化(teaching-learning-based optimization algorithm based on chaotic search and weighted learning,TLBO-CSWL)算法。在TLBO-CSWL算法...针对教与学优化算法容易陷入早熟收敛的问题,本研究提出了一种基于混沌搜索和权重学习的教与学优化(teaching-learning-based optimization algorithm based on chaotic search and weighted learning,TLBO-CSWL)算法。在TLBO-CSWL算法的教学阶段,不仅利用权重学习得到的个体来指引种群的进化,而且还使用正态分布随机数来替代原有的均匀随机数。另外,TLBO-CSWL还使用Logistics混沌搜索策略来提高其全局搜索能力。仿真结果表明,TLBO-CSWL的整体优化性能要好于其他所比较的算法。最后,将TLBO-CSWL用于求解非合作博弈纳什均衡问题,获得满意的结果。展开更多
文摘针对将连续域蚁群优化算法应用于最大似然(maximum likelihood,ML)估计中存在计算量过大的问题,提出一种基于改进蚁群优化(modified ant colony optimization,MACO)算法的最大似然波达方向(maximum likelihood direction of arrival,ML-DOA)估计方法.采用精英反向学习策略获得较优初始解群体,结合全局跨邻域搜索和高斯核函数局部搜索对蚁群的寻优方式进行优化,扩大了算法的搜索空间并加快了收敛速度,最终得到ML估计方法的非线性全局最优解.仿真结果表明,与基于粒子群优化(particle swarm optimization,PSO)算法、蚁群优化(ant colony optimization,ACO)算法的ML估计方法相比,ML-MACO算法的收敛速度是ML-ACO算法的4倍,计算量是ML-ACO算法的1/3,分辨成功率高于ML-PSO算法和ML-ACO算法,估计误差小于ML-PSO算法和ML-ACO算法.ML-MACO算法以更低的计算量保持了ML算法的优良估计性能,收敛性能更优且估计精度更高.
文摘针对教与学优化算法容易陷入早熟收敛的问题,本研究提出了一种基于混沌搜索和权重学习的教与学优化(teaching-learning-based optimization algorithm based on chaotic search and weighted learning,TLBO-CSWL)算法。在TLBO-CSWL算法的教学阶段,不仅利用权重学习得到的个体来指引种群的进化,而且还使用正态分布随机数来替代原有的均匀随机数。另外,TLBO-CSWL还使用Logistics混沌搜索策略来提高其全局搜索能力。仿真结果表明,TLBO-CSWL的整体优化性能要好于其他所比较的算法。最后,将TLBO-CSWL用于求解非合作博弈纳什均衡问题,获得满意的结果。