In this article, we consider the continuous gas in a bounded domain ∧ of R^+ or R^d described by a Gibbsian probability measure μη∧ associated with a pair interaction φ, the inverse temperature β, the activity...In this article, we consider the continuous gas in a bounded domain ∧ of R^+ or R^d described by a Gibbsian probability measure μη∧ associated with a pair interaction φ, the inverse temperature β, the activity z 〉 0, and the boundary condition η. Define F ∫ωf(s)wA(ds). Applying the generalized Ito's formula for forward-backward martingales (see Klein et M. [5]), we obtain convex concentration inequalities for F with respect to the Gibbs measure μη∧. On the other hand, by FKG inequality on the Poisson space, we also give a new simple argument for the stochastic domination for the Gibbs measure.展开更多
文摘In this article, we consider the continuous gas in a bounded domain ∧ of R^+ or R^d described by a Gibbsian probability measure μη∧ associated with a pair interaction φ, the inverse temperature β, the activity z 〉 0, and the boundary condition η. Define F ∫ωf(s)wA(ds). Applying the generalized Ito's formula for forward-backward martingales (see Klein et M. [5]), we obtain convex concentration inequalities for F with respect to the Gibbs measure μη∧. On the other hand, by FKG inequality on the Poisson space, we also give a new simple argument for the stochastic domination for the Gibbs measure.