期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
改进YOLOv8s-Pose多人姿态估计轻量化模型研究
被引量:
3
1
作者
傅裕
高树辉
《计算机科学与探索》
北大核心
2025年第3期682-692,共11页
针对现有人体姿态估计模型计算量大、检测速度慢等问题,提出了一种基于YOLOv8s-Pose模型的轻量化改进算法。在backbone中引入轻量化模块C2f-GhostNetBottleNeckV2替换原先C2f,减少参数量,提高模型速度。引入Non_Local注意力机制捕捉并...
针对现有人体姿态估计模型计算量大、检测速度慢等问题,提出了一种基于YOLOv8s-Pose模型的轻量化改进算法。在backbone中引入轻量化模块C2f-GhostNetBottleNeckV2替换原先C2f,减少参数量,提高模型速度。引入Non_Local注意力机制捕捉并传递人体关键点位置,直接融合全面的信息,为后续的层级提供更为丰富和深入的语义信息,提升整体的信息处理深度和广度,强化特征提取的效能,减少模型轻量化后精度降低问题,再将neck层引入加权双向特征金字塔网络,通过双向融合的理念,对自顶向下和自底向上的信息流动路径进行了重新规划,确保在处理不同尺度的特征信息时达到良好的平衡,给网络增加一个小目标检测头,减少对小目标的漏检情况,将CIOU损失函数更换为Focal-EIOU损失函数,以增强对复杂场景和多目标场景下的鲁棒性。实验结果表明,改进后的实验模型参数量降低了9.3%,在COCO2017人体关键点数据集上,与原模型相比mAP@0.50提升了0.4个百分点,mAP@0.50:0.95提升了0.6个百分点。可见,所提出的轻量化改进算法在减少模型参数量的同时,提升了人体姿态估计的算法精度,尤其对小目标检测有显著改善,为实现实时准确的姿态估计提供了有效手段。
展开更多
关键词
姿态估计
YOLOv8s-Pose
ghostnetv2
网络
加权双向特征金字塔网络
损失函数
在线阅读
下载PDF
职称材料
基于轻量型卷积神经网络的马铃薯种薯芽眼检测算法
被引量:
11
2
作者
黄杰
王相友
+3 位作者
吴海涛
刘书玮
杨笑难
刘为龙
《农业工程学报》
EI
CAS
CSCD
北大核心
2023年第9期172-182,共11页
马铃薯种薯芽眼属于小目标物体,识别难度大、要求高。为了在试验台(芽眼识别装置)上快速、准确地完成识别任务,该研究提出一种基于轻量型卷积神经网络的芽眼检测模型。首先,为了降低模型的计算量和聚焦小目标物体,替换YOLOv4的主干网络C...
马铃薯种薯芽眼属于小目标物体,识别难度大、要求高。为了在试验台(芽眼识别装置)上快速、准确地完成识别任务,该研究提出一种基于轻量型卷积神经网络的芽眼检测模型。首先,为了降低模型的计算量和聚焦小目标物体,替换YOLOv4的主干网络CSPDarkNet-53为GhostNetV2轻量型特征提取网络;其次,在YOLOv4的颈部网络中,使用深度可分离卷积(depthwise separable convolution,DW)模块代替普通卷积块进一步降低模型计算量;最后,更改边界框损失函数为具有角度代价的边界框损失函数(SIoU),避免因预测框的位置不确定,而影响模型收敛速度和整体检测性能。结果表明,改进后芽眼检测模型参数量为12.04 M,使用笔记本电脑CPU检测单张图片的时间为0.148 s,从试验台收集的测试数据显示平均精度为89.13%。相对于其他主干特征提取网络CSPDarkNet-53、MobileNetV1、MobileNetV2、MobileNetV3、GhostNetV1,其检测精度分别高出1.85、0.75、2.67、4.17、1.89个百分点;与同类目标检测模型SSD、Faster-RCNN、EifficientDet、CenterNet、YOLOv7相比,在检测精度上,分别高出23.26、27.45、10.51、18.09、2.13个百分点,在检测时间上,分别降低0.007、6.754、1.891、1.745、0.422 s,且模型参数量具有明显优势。该研究为小目标物体检测和模型部署提供技术支撑。
展开更多
关键词
图像识别
卷积神经网络
马铃薯芽眼检测
小目标
YOLOv4
ghostnetv2
在线阅读
下载PDF
职称材料
题名
改进YOLOv8s-Pose多人姿态估计轻量化模型研究
被引量:
3
1
作者
傅裕
高树辉
机构
中国人民公安大学侦查学院
出处
《计算机科学与探索》
北大核心
2025年第3期682-692,共11页
基金
中国人民公安大学刑事科学技术双一流创新研究专项(2023SYL06)。
文摘
针对现有人体姿态估计模型计算量大、检测速度慢等问题,提出了一种基于YOLOv8s-Pose模型的轻量化改进算法。在backbone中引入轻量化模块C2f-GhostNetBottleNeckV2替换原先C2f,减少参数量,提高模型速度。引入Non_Local注意力机制捕捉并传递人体关键点位置,直接融合全面的信息,为后续的层级提供更为丰富和深入的语义信息,提升整体的信息处理深度和广度,强化特征提取的效能,减少模型轻量化后精度降低问题,再将neck层引入加权双向特征金字塔网络,通过双向融合的理念,对自顶向下和自底向上的信息流动路径进行了重新规划,确保在处理不同尺度的特征信息时达到良好的平衡,给网络增加一个小目标检测头,减少对小目标的漏检情况,将CIOU损失函数更换为Focal-EIOU损失函数,以增强对复杂场景和多目标场景下的鲁棒性。实验结果表明,改进后的实验模型参数量降低了9.3%,在COCO2017人体关键点数据集上,与原模型相比mAP@0.50提升了0.4个百分点,mAP@0.50:0.95提升了0.6个百分点。可见,所提出的轻量化改进算法在减少模型参数量的同时,提升了人体姿态估计的算法精度,尤其对小目标检测有显著改善,为实现实时准确的姿态估计提供了有效手段。
关键词
姿态估计
YOLOv8s-Pose
ghostnetv2
网络
加权双向特征金字塔网络
损失函数
Keywords
pose estimation
YOLOv8s-Pose
ghostnetv2 network
weighted bidirectional feature pyramid
network
loss function
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于轻量型卷积神经网络的马铃薯种薯芽眼检测算法
被引量:
11
2
作者
黄杰
王相友
吴海涛
刘书玮
杨笑难
刘为龙
机构
山东理工大学农业工程与食品科学学院
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2023年第9期172-182,共11页
基金
山东省农业重大应用技术创新项目(SD2019NJ010)。
文摘
马铃薯种薯芽眼属于小目标物体,识别难度大、要求高。为了在试验台(芽眼识别装置)上快速、准确地完成识别任务,该研究提出一种基于轻量型卷积神经网络的芽眼检测模型。首先,为了降低模型的计算量和聚焦小目标物体,替换YOLOv4的主干网络CSPDarkNet-53为GhostNetV2轻量型特征提取网络;其次,在YOLOv4的颈部网络中,使用深度可分离卷积(depthwise separable convolution,DW)模块代替普通卷积块进一步降低模型计算量;最后,更改边界框损失函数为具有角度代价的边界框损失函数(SIoU),避免因预测框的位置不确定,而影响模型收敛速度和整体检测性能。结果表明,改进后芽眼检测模型参数量为12.04 M,使用笔记本电脑CPU检测单张图片的时间为0.148 s,从试验台收集的测试数据显示平均精度为89.13%。相对于其他主干特征提取网络CSPDarkNet-53、MobileNetV1、MobileNetV2、MobileNetV3、GhostNetV1,其检测精度分别高出1.85、0.75、2.67、4.17、1.89个百分点;与同类目标检测模型SSD、Faster-RCNN、EifficientDet、CenterNet、YOLOv7相比,在检测精度上,分别高出23.26、27.45、10.51、18.09、2.13个百分点,在检测时间上,分别降低0.007、6.754、1.891、1.745、0.422 s,且模型参数量具有明显优势。该研究为小目标物体检测和模型部署提供技术支撑。
关键词
图像识别
卷积神经网络
马铃薯芽眼检测
小目标
YOLOv4
ghostnetv2
Keywords
image identification
convolutional neural
network
potato bud eye detection
small target
YOLOv4
ghostnetv2
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
S214.9 [农业科学—农业机械化工程]
S24 [农业科学—农业电气化与自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
改进YOLOv8s-Pose多人姿态估计轻量化模型研究
傅裕
高树辉
《计算机科学与探索》
北大核心
2025
3
在线阅读
下载PDF
职称材料
2
基于轻量型卷积神经网络的马铃薯种薯芽眼检测算法
黄杰
王相友
吴海涛
刘书玮
杨笑难
刘为龙
《农业工程学报》
EI
CAS
CSCD
北大核心
2023
11
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部