期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
改进YOLOv8s-Pose多人姿态估计轻量化模型研究 被引量:3
1
作者 傅裕 高树辉 《计算机科学与探索》 北大核心 2025年第3期682-692,共11页
针对现有人体姿态估计模型计算量大、检测速度慢等问题,提出了一种基于YOLOv8s-Pose模型的轻量化改进算法。在backbone中引入轻量化模块C2f-GhostNetBottleNeckV2替换原先C2f,减少参数量,提高模型速度。引入Non_Local注意力机制捕捉并... 针对现有人体姿态估计模型计算量大、检测速度慢等问题,提出了一种基于YOLOv8s-Pose模型的轻量化改进算法。在backbone中引入轻量化模块C2f-GhostNetBottleNeckV2替换原先C2f,减少参数量,提高模型速度。引入Non_Local注意力机制捕捉并传递人体关键点位置,直接融合全面的信息,为后续的层级提供更为丰富和深入的语义信息,提升整体的信息处理深度和广度,强化特征提取的效能,减少模型轻量化后精度降低问题,再将neck层引入加权双向特征金字塔网络,通过双向融合的理念,对自顶向下和自底向上的信息流动路径进行了重新规划,确保在处理不同尺度的特征信息时达到良好的平衡,给网络增加一个小目标检测头,减少对小目标的漏检情况,将CIOU损失函数更换为Focal-EIOU损失函数,以增强对复杂场景和多目标场景下的鲁棒性。实验结果表明,改进后的实验模型参数量降低了9.3%,在COCO2017人体关键点数据集上,与原模型相比mAP@0.50提升了0.4个百分点,mAP@0.50:0.95提升了0.6个百分点。可见,所提出的轻量化改进算法在减少模型参数量的同时,提升了人体姿态估计的算法精度,尤其对小目标检测有显著改善,为实现实时准确的姿态估计提供了有效手段。 展开更多
关键词 姿态估计 YOLOv8s-Pose ghostnetv2网络 加权双向特征金字塔网络 损失函数
在线阅读 下载PDF
基于轻量型卷积神经网络的马铃薯种薯芽眼检测算法 被引量:11
2
作者 黄杰 王相友 +3 位作者 吴海涛 刘书玮 杨笑难 刘为龙 《农业工程学报》 EI CAS CSCD 北大核心 2023年第9期172-182,共11页
马铃薯种薯芽眼属于小目标物体,识别难度大、要求高。为了在试验台(芽眼识别装置)上快速、准确地完成识别任务,该研究提出一种基于轻量型卷积神经网络的芽眼检测模型。首先,为了降低模型的计算量和聚焦小目标物体,替换YOLOv4的主干网络C... 马铃薯种薯芽眼属于小目标物体,识别难度大、要求高。为了在试验台(芽眼识别装置)上快速、准确地完成识别任务,该研究提出一种基于轻量型卷积神经网络的芽眼检测模型。首先,为了降低模型的计算量和聚焦小目标物体,替换YOLOv4的主干网络CSPDarkNet-53为GhostNetV2轻量型特征提取网络;其次,在YOLOv4的颈部网络中,使用深度可分离卷积(depthwise separable convolution,DW)模块代替普通卷积块进一步降低模型计算量;最后,更改边界框损失函数为具有角度代价的边界框损失函数(SIoU),避免因预测框的位置不确定,而影响模型收敛速度和整体检测性能。结果表明,改进后芽眼检测模型参数量为12.04 M,使用笔记本电脑CPU检测单张图片的时间为0.148 s,从试验台收集的测试数据显示平均精度为89.13%。相对于其他主干特征提取网络CSPDarkNet-53、MobileNetV1、MobileNetV2、MobileNetV3、GhostNetV1,其检测精度分别高出1.85、0.75、2.67、4.17、1.89个百分点;与同类目标检测模型SSD、Faster-RCNN、EifficientDet、CenterNet、YOLOv7相比,在检测精度上,分别高出23.26、27.45、10.51、18.09、2.13个百分点,在检测时间上,分别降低0.007、6.754、1.891、1.745、0.422 s,且模型参数量具有明显优势。该研究为小目标物体检测和模型部署提供技术支撑。 展开更多
关键词 图像识别 卷积神经网络 马铃薯芽眼检测 小目标 YOLOv4 ghostnetv2
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部