期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进GhostNet V2的轻量化熊蜂图像分类模型
1
作者 范为培 于晓明 +2 位作者 沈凤龙 王亮 王星 《浙江农业学报》 CSCD 北大核心 2024年第12期2832-2845,共14页
为准确、快速地实现熊蜂的自动分拣,提出了一种轻量化深度学习熊蜂图像分类模型。首先,采集了地熊蜂的蜂王、雄蜂和工蜂图像1 742张,并通过数据增强构建了包含13 117张熊蜂图像的数据集BumblebeeImage。然后,以GhostNet V2模型为基础,... 为准确、快速地实现熊蜂的自动分拣,提出了一种轻量化深度学习熊蜂图像分类模型。首先,采集了地熊蜂的蜂王、雄蜂和工蜂图像1 742张,并通过数据增强构建了包含13 117张熊蜂图像的数据集BumblebeeImage。然后,以GhostNet V2模型为基础,通过多尺度卷积获取输入图像更多感受野下的特征信息,增加两条捷径分支分别将低层与中层、高层的特征融合,将ReLU激活函数替换为SiLU,删减bottleneck层数和通道数,设计了一种轻量化熊蜂图像分类模型GMCFF。结果表明,利用GMCFF模型对BumblebeeImage数据集进行分类的准确率达到了98.40%,较原模型提高了1.53百分点,与ShuffleNetV2和MobileNetV2模型的分类准确率对比也更高,分别提高了1.53百分点和1.15百分点。该模型参数量只有0.73 M,浮点运算量较改进前下降了25.15 M,模型大小仅有3.01 MB,单张熊蜂图像的平均测试时间为17.08 ms,满足轻量化与实时性的要求。 展开更多
关键词 熊蜂分类 ghostnet v2 轻量化 多尺度卷积 特征融合
在线阅读 下载PDF
改进YOLOv7-tiny的轻量级红外车辆目标检测算法 被引量:15
2
作者 许晓阳 高重阳 《计算机工程与应用》 CSCD 北大核心 2024年第1期74-83,共10页
为了解决红外场景下车辆检测算法参数量与计算量大、识别精度低、小目标检测难度大的问题,提出了一种改进YOLOv7-tiny的轻量级红外车辆目标检测算法:KD-YOLO-DW。通过融合深度可分离卷积提出了ELAN-DW模块,极大地降低了网络参数量与计... 为了解决红外场景下车辆检测算法参数量与计算量大、识别精度低、小目标检测难度大的问题,提出了一种改进YOLOv7-tiny的轻量级红外车辆目标检测算法:KD-YOLO-DW。通过融合深度可分离卷积提出了ELAN-DW模块,极大地降低了网络参数量与计算量。通过在特征融合层引入GhostNet V2模块,提高了不同尺度特征的融合能力。采用动态非单调FM的WIoU损失函数,解决了红外数据集难易样本不平衡的问题,提高了轻量级算法对红外弱小目标的检测能力。联合残差思想提出跨尺度融合策略,提高了轻量级算法对不同尺度目标的检测效果,降低了小目标的漏检率。通过知识蒸馏对轻量化模型再次浓缩,进一步提高了模型对检测红外目标的准确性。实验结果表明,KD-YOLO-DW模型在参数量与计算量方面分别较YOLOv7-tiny模型下降了24.6%和16.7%,模型大小仅为9.2 MB,mAP分别提高了3.27和3.15个百分点,拥有更小的模型体积与更好的检测效果。 展开更多
关键词 红外目标检测 轻量级 知识蒸馏 损失函数 YOLOv7-tiny ghostnet v2
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部